Ultralong propagation of a surface plasmon polariton wave within an ultrawide bandwidth via phase-sensitive optical parametric amplification

Opt Lett. 2017 Apr 15;42(8):1564-1567. doi: 10.1364/OL.42.001564.

Abstract

The propagation length enhancement of surface plasmon polariton (SPP) waves could lead to practical applications. This Letter proposes the numerically verified phase-sensitive nonlinear χ(2)-based optical parametric amplification (OPA) for ultralong propagation of a SPP wave within an ultrawide bandwidth. The strong nonlinear interaction between the SPP mode and the hybrid guided mode, which limits the length enhancement, is mitigated in a silver-coated linearly chirped periodically poled lithium niobate planar waveguide via slowly phase-matched OPA. Obtained results indicate an ultralong propagation length for a SPP mode of about 4 cm when a 135 MW/cm pump intensity is launched. The acceptance bandwidth of the amplified SPP shows its dependency on the pump intensity; for a pump intensity range between 70 and 135 MW/cm, the acceptance bandwidth is still ultrawide, varying from 28 to 18 nm, respectively.