Population Genetic Structure of Venturia effusa, Cause of Pecan Scab, in the Southeastern United States

Phytopathology. 2017 May;107(5):607-619. doi: 10.1094/PHYTO-10-16-0376-R. Epub 2017 Mar 21.

Abstract

Venturia effusa is the most important pathogen of pecan in the southeastern United States. Little information exists on the population biology and genetic diversity of the pathogen. A hierarchical sampling of 784 isolates from 63 trees in 11 pecan orchards in the southeastern United States were screened against a set of 30 previously characterized microsatellite markers. Populations were collected from Georgia (n = 2), Florida (n = 1), Alabama (n = 2), Mississippi (n = 1), Louisiana (n = 1), Illinois (n = 1), Oklahoma (n = 1), Texas (n = 1), and Kansas (n = 1). Clonality was low in all orchard populations (≤10.1% of isolates), and there were consistently high levels of genotypic diversity (Shannon-Weiner's index = 3.49 to 4.59) and gene diversity (Nei's measure = 0.513 to 0.713). Analysis of molecular variance showed that, although 81% of genetic diversity occurred at the scale of the individual tree, 16% occurred between orchards and only 3% between trees within orchards. All populations could be differentiated from each other (P = 0.01), and various cluster analyses indicated that some populations were more closely related compared with other pairs of populations. This is indicative of some limited population differentiation in V. effusa in the southeastern United States. Bayesian and nearest-neighbor methods suggested eight clusters, with orchards from Georgia and Florida being grouped together. A minimum spanning tree of all 784 isolates also indicated some isolate identification with source population. Linkage disequilibrium was detected in all but one population (Kansas), although 8 of the 11 populations had <20% of loci at disequilibrium. A Mantel test demonstrated a relationship between physical and genetic distance between populations (Z = 11.9, r = 0.559, P = 0.001). None of the populations were at mutation-drift equilibrium. All but 3 of the 11 populations had a deficiency of gene diversity compared with that expected at mutation-drift equilibrium (indicating population expansion); the remaining populations had an excess of gene diversity compared with that expected at mutation-drift equilibrium (indicating a recent bottleneck). These observations are consistent with the known history of pecan and pecan scab, which is that V. effusa became an issue on cultivated pecan in the last approximately 120 years (recent population expansion). Recently reported mating type genes and the sexual stage of this fungus may help explain the observed population characteristics, which bear a strong resemblance to those of other well-characterized sexually reproducing ascomycete pathogens.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ascomycota / genetics*
  • Carya / microbiology*
  • Genetic Variation*
  • Genetics, Population
  • Genotype
  • Linkage Disequilibrium
  • Microsatellite Repeats / genetics
  • Plant Diseases / microbiology*
  • Southeastern United States