Marker-free coselection for CRISPR-driven genome editing in human cells
- PMID: 28417998
- DOI: 10.1038/nmeth.4265
Marker-free coselection for CRISPR-driven genome editing in human cells
Abstract
Targeted genome editing enables the creation of bona fide cellular models for biological research and may be applied to human cell-based therapies. Therefore, broadly applicable and versatile methods for increasing its efficacy in cell populations are highly desirable. We designed a simple and robust coselection strategy for enrichment of cells with either nuclease-driven nonhomologous end joining (NHEJ) or homology-directed repair (HDR) events by harnessing the multiplexing capabilities of CRISPR-Cas9 and Cpf1 systems. Selection for dominant alleles of the ubiquitous sodium/potassium pump (Na+/K+ ATPase) that rendered cells resistant to ouabain was used to enrich for custom genetic modifications at another unlinked locus of interest, thereby effectively increasing the recovery of engineered cells. The process is readily adaptable to transformed and primary cells, including hematopoietic stem and progenitor cells. The use of universal CRISPR reagents and a commercially available small-molecule inhibitor streamlines the incorporation of marker-free genetic changes in human cells.
Similar articles
-
Rapid genome editing by CRISPR-Cas9-POLD3 fusion.Elife. 2021 Dec 13;10:e75415. doi: 10.7554/eLife.75415. Elife. 2021. PMID: 34898428 Free PMC article.
-
Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52.Int J Biochem Cell Biol. 2017 Nov;92:43-52. doi: 10.1016/j.biocel.2017.09.012. Epub 2017 Sep 18. Int J Biochem Cell Biol. 2017. PMID: 28928041
-
Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.Nat Protoc. 2017 Jan;12(1):88-103. doi: 10.1038/nprot.2016.152. Epub 2016 Dec 8. Nat Protoc. 2017. PMID: 27929521 Free PMC article.
-
Exploring the potential of genome editing CRISPR-Cas9 technology.Gene. 2017 Jan 30;599:1-18. doi: 10.1016/j.gene.2016.11.008. Epub 2016 Nov 9. Gene. 2017. PMID: 27836667 Review.
-
Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.Circ Res. 2017 Mar 3;120(5):876-894. doi: 10.1161/CIRCRESAHA.116.309727. Circ Res. 2017. PMID: 28254804 Review.
Cited by
-
Structural basis of RIP2 activation and signaling.Nat Commun. 2018 Nov 26;9(1):4993. doi: 10.1038/s41467-018-07447-9. Nat Commun. 2018. PMID: 30478312 Free PMC article.
-
Synergistic gene editing in human iPS cells via cell cycle and DNA repair modulation.Nat Commun. 2020 Jun 8;11(1):2876. doi: 10.1038/s41467-020-16643-5. Nat Commun. 2020. PMID: 32513994 Free PMC article.
-
Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells.J Immunol. 2018 Apr 1;200(7):2489-2501. doi: 10.4049/jimmunol.1701121. Epub 2018 Feb 14. J Immunol. 2018. PMID: 29445007 Free PMC article.
-
IntAct: A nondisruptive internal tagging strategy to study the organization and function of actin isoforms.PLoS Biol. 2024 Mar 11;22(3):e3002551. doi: 10.1371/journal.pbio.3002551. eCollection 2024 Mar. PLoS Biol. 2024. PMID: 38466773 Free PMC article.
-
Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency.Nat Biotechnol. 2018 Jan;36(1):95-102. doi: 10.1038/nbt.4021. Epub 2017 Nov 27. Nat Biotechnol. 2018. PMID: 29176614 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
