Identifying thermal breakdown products of thermoplastics

J Occup Environ Hyg. 2017 Jul;14(7):551-561. doi: 10.1080/15459624.2017.1302586.

Abstract

Polymers processed to produce plastic articles are subjected to temperatures between 150°C and 450°C or more during overheated processing and breakdowns. Heat-based processing of this nature can lead to emission of volatile organic compounds (VOCs) into the thermoplastic processing shop. In this study, laboratory experiments, qualitative and quantitative emissions measurement in thermoplastic factories were carried out. The first step was to identify the compounds released depending on the thermoplastic nature, the temperature and the type of process. Then a thermal degradation protocol that can extrapolate the laboratory results to industry scenarios was developed. The influence of three parameters on released thermal breakdown products was studied: the sample preparation methods-manual cutting, ambient, or cold grinding-the heating rate during thermal degradation-5, 10 20, and 50°C/min-and the decomposition method-thermogravimetric analysis and pyrolysis. Laboratory results were compared to atmospheric measurements taken at 13 companies to validate the protocol and thereby ensure its representativeness of industrial thermal processing. This protocol was applied to most commonly used thermoplastics to determine their thermal breakdown products and their thermal behaviour. Emissions data collected by personal exposure monitoring and sampling at the process emission area show airborne concentrations of detected compounds to be in the range of 0-3 mg/m3 under normal operating conditions. Laser cutting or purging operations generate higher pollution levels in particular formaldehyde which was found in some cases at a concentration above the workplace exposure limit.

Keywords: Analytical protocol; contaminant in plastic molding shops; plastic thermal degradation.

MeSH terms

  • Air Pollutants, Occupational / analysis*
  • Formaldehyde / analysis
  • Hot Temperature*
  • Humans
  • Occupational Exposure / analysis
  • Plastics / chemistry*
  • Volatile Organic Compounds / analysis*

Substances

  • Air Pollutants, Occupational
  • Plastics
  • Volatile Organic Compounds
  • Formaldehyde