HOS1 acts as a key modulator of hypocotyl photomorphogenesis
- PMID: 28426369
- PMCID: PMC5501242
- DOI: 10.1080/15592324.2017.1315497
HOS1 acts as a key modulator of hypocotyl photomorphogenesis
Abstract
Plants recognize light as an environmental signal to determine the proper timing of growth and development. In Arabidopsis seedlings, hypocotyl growth is promoted in the dark but suppressed in the light. It is known that the red/far-red light-sensing receptor phytochrome B (phyB) suppresses the function of PHYTOCHROME INTERACTING FACTOR (PIF) transcription factors, which act as photomorphogenic repressors. However, molecular mechanisms underlying the phyB-mediated inhibition of PIF functioning remain unclear. We recently demonstrated that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) facilitates the phyB-mediated suppression of PIF4 during the light period to achieve hypocotyl photomorphogenesis. HOS1 inhibits the transcriptional activation activity of PIF4 by forming protein complexes. Notably, phyB-mediated light signals induce HOS1 activity, thus promoting hypocotyl photomorphogenesis. While HOS1 is known to act as an E3 ubiquitin ligase or a chromatin remodeling factor, our data illustrate a novel role of HOS1: it acts as a component of phyB-mediated light signaling in hypocotyl photomorphogenesis.
Keywords: HOS1; PIF4; hypocotyl growth; photomorphogenesis; phytochrome signaling.
Figures
Similar articles
-
HOS1 Facilitates the Phytochrome B-Mediated Inhibition of PIF4 Function during Hypocotyl Growth in Arabidopsis.Mol Plant. 2017 Feb 13;10(2):274-284. doi: 10.1016/j.molp.2016.11.009. Epub 2016 Nov 25. Mol Plant. 2017. PMID: 27890635
-
The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms.Plant Cell. 2007 Dec;19(12):3915-29. doi: 10.1105/tpc.107.051508. Epub 2007 Dec 7. Plant Cell. 2007. PMID: 18065691 Free PMC article.
-
Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop.Mol Plant. 2012 May;5(3):734-49. doi: 10.1093/mp/sss031. Epub 2012 Apr 5. Mol Plant. 2012. PMID: 22492120 Free PMC article.
-
Convergent regulation of PIFs and the E3 ligase COP1/SPA1 mediates thermosensory hypocotyl elongation by plant phytochromes.Curr Opin Plant Biol. 2018 Oct;45(Pt A):188-203. doi: 10.1016/j.pbi.2018.09.006. Epub 2018 Sep 29. Curr Opin Plant Biol. 2018. PMID: 30273926 Review.
-
Plant hormone signaling lightens up: integrators of light and hormones.Curr Opin Plant Biol. 2010 Oct;13(5):571-7. doi: 10.1016/j.pbi.2010.07.001. Epub 2010 Aug 23. Curr Opin Plant Biol. 2010. PMID: 20739215 Review.
Cited by
-
The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects.Front Plant Sci. 2023 Jan 4;13:1083960. doi: 10.3389/fpls.2022.1083960. eCollection 2022. Front Plant Sci. 2023. PMID: 36684752 Free PMC article. Review.
-
RING Zinc Finger Proteins in Plant Abiotic Stress Tolerance.Front Plant Sci. 2022 Apr 14;13:877011. doi: 10.3389/fpls.2022.877011. eCollection 2022. Front Plant Sci. 2022. PMID: 35498666 Free PMC article. Review.
-
Function of Nuclear Pore Complexes in Regulation of Plant Defense Signaling.Int J Mol Sci. 2022 Mar 11;23(6):3031. doi: 10.3390/ijms23063031. Int J Mol Sci. 2022. PMID: 35328452 Free PMC article. Review.
-
Research Progress on Plant RING-Finger Proteins.Genes (Basel). 2019 Nov 26;10(12):973. doi: 10.3390/genes10120973. Genes (Basel). 2019. PMID: 31779262 Free PMC article. Review.
-
E3 Ubiquitin Ligases: Key Regulators of Hormone Signaling in Plants.Mol Cell Proteomics. 2018 Jun;17(6):1047-1054. doi: 10.1074/mcp.MR117.000476. Epub 2018 Mar 7. Mol Cell Proteomics. 2018. PMID: 29514858 Free PMC article. Review.
References
-
- Esmon CA, Pedmale UV, Liscum E. Plant tropisms: Providing the power of movement to a sessile organism. Int J Dev Biol 2005; 49(5–6):665-74; PMID:16096973; https://doi.org/10.1387/ijdb.052028ce - DOI - PubMed
-
- von Arnim AG, Deng XW. Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 1994; 79(6):1035-45; PMID:8001131; https://doi.org/10.1016/0092-8674(94)90034-5 - DOI - PubMed
-
- Reed JW, Nagpal P, Poole DS, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 1993; 5(2):147-57; PMID:8453299; https://doi.org/10.1105/tpc.5.2.147 - DOI - PMC - PubMed
-
- Kircher S, Gil P, Kozma-Bognár L, Fejes E, Speth V, Husselstein-Muller T, Bauer D, Adám E, Schäfer E, Nagy F. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 2002; 14(7):1541-55; PMID:12119373; https://doi.org/10.1105/tpc.001156 - DOI - PMC - PubMed
-
- Chory J, Chatterjee M, Cook RK, Elich T, Fankhauser C, Li J, Nagpal P, Neff M, Pepper A, Poole D, et al.. From seed germination to flowering, light controls plant development via the pigment phytochrome. Proc Natl Acad Sci USA 1996; 93(22):12066-71; PMID:8901532; https://doi.org/10.1073/pnas.93.22.12066 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
