The decreased growth performance and impaired immune function and structural integrity by dietary iron deficiency or excess are associated with TOR, NF-κB, p38MAPK, Nrf2 and MLCK signaling in head kidney, spleen and skin of grass carp (Ctenopharyngodon idella)

Fish Shellfish Immunol. 2017 Jun:65:145-168. doi: 10.1016/j.fsi.2017.04.009. Epub 2017 Apr 18.

Abstract

This study was conducted to investigate the effects of dietary iron on the growth, and immune function and structural integrity in head kidney, spleen and skin as well as the underlying signaling of young grass carp (Ctenopharyngodon idella). Total 630 grass carp (242.32 ± 0.58 g) were fed diets containing graded levels of iron at 12.15 (basal diet), 35.38, 63.47, 86.43, 111.09, 136.37 mg/kg (diets 2-6 were added with ferrous fumarate) and 73.50 mg/kg (diet 7 was added with ferrous sulfate) diet for 60 days. Then, a challenge test was conducted by infection of Aeromonas hydrophila for 14 days. The results firstly showed that compared with optimal iron level, iron deficiency decreased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents and down-regulated the mRNA levels of antibacterial peptides, anti-inflammatory cytokines, inhibitor of κBα (IκBα), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1), whereas up-regulated the mRNA levels of pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) p65, IκB kinases β (IKKβ) and eIF4E-binding protein (4E-BP) in head kidney and spleen of young grass carp (P < 0.05), indicating that iron deficiency impaired immune function in head kidney and spleen of fish. Secondly, iron deficiency down-regulated the mRNA levels of B-cell lymphoma-2 (Bcl-2), myeloid cell leukemia 1 (Mcl-1), and inhibitor of apoptosis protein (IAP), and decreased activities and mRNA levels of antioxidant enzymes, down-regulated the mRNA levels of NF-E2-related factor 2 (Nrf2) and tight junction complexes, and up-regulated mRNA levels of cysteinyl aspartic acid-protease (caspase) -2, -3, -7, -8, -9, apoptotic protease activating factor-1 (Apaf-1), Bcl-2 associated X protein (Bax), Fas ligand (FasL), p38 mitogen-activated protein kinase (p38MAPK), Kelch-like ECH-associating protein (Keap) 1a, Keap1b, claudin-12 and myosin light chain kinase (MLCK), and increased malondialdehyde (MDA), protein carbonyl (PC) and reactive oxygen species (ROS) contents in head kidney and spleen of young grass carp (P < 0.05), indicating that iron deficiency impaired structural integrity in head kidney and spleen of fish. Thirdly, iron deficiency increased skin hemorrhage and lesion morbidity, and impaired immune function and structural integrity in skin of fish. Fourthly, iron excess decreased growth and impaired the immune function and structural integrity in head kidney, spleen and skin of fish. Besides, in young grass carp, based on PWG and ability against skin hemorrhage and lesion, the efficacy of ferrous fumarate relative to ferrous sulfate was 140.32% and 126.48%, respectively, and the iron requirements based on PWG, ability against skin hemorrhage and lesion, ACP activities and MDA contents in head kidney and spleen were estimated to be 75.65, 87.03, 79.74, 78.93, 83.17 and 82.14 mg/kg diet (based on ferrous fumarate), respectively.

Keywords: Grass carp (Ctenopharyngodon idella); Head kidney; Immune function; Iron deficiency; Skin; Spleen; Structural integrity.

MeSH terms

  • Aeromonas hydrophila / physiology
  • Animal Feed / analysis
  • Animals
  • Carps* / growth & development
  • Diet / veterinary
  • Dose-Response Relationship, Drug
  • Fish Diseases / genetics
  • Fish Diseases / immunology*
  • Fish Diseases / microbiology
  • Fish Proteins / genetics*
  • Fish Proteins / metabolism
  • Gram-Negative Bacterial Infections / genetics
  • Gram-Negative Bacterial Infections / immunology
  • Gram-Negative Bacterial Infections / microbiology
  • Gram-Negative Bacterial Infections / veterinary*
  • Head Kidney / metabolism
  • Immunity, Innate / drug effects
  • Iron / pharmacology
  • Iron Deficiencies*
  • Iron, Dietary / metabolism*
  • Random Allocation
  • Signal Transduction / drug effects
  • Skin / metabolism
  • Spleen / metabolism

Substances

  • Fish Proteins
  • Iron, Dietary
  • Iron