The temporal paradox of Hebbian learning and homeostatic plasticity
- PMID: 28431369
- DOI: 10.1016/j.conb.2017.03.015
The temporal paradox of Hebbian learning and homeostatic plasticity
Abstract
Hebbian plasticity, a synaptic mechanism which detects and amplifies co-activity between neurons, is considered a key ingredient underlying learning and memory in the brain. However, Hebbian plasticity alone is unstable, leading to runaway neuronal activity, and therefore requires stabilization by additional compensatory processes. Traditionally, a diversity of homeostatic plasticity phenomena found in neural circuits is thought to play this role. However, recent modelling work suggests that the slow evolution of homeostatic plasticity, as observed in experiments, is insufficient to prevent instabilities originating from Hebbian plasticity. To remedy this situation, we suggest that homeostatic plasticity is complemented by additional rapid compensatory processes, which rapidly stabilize neuronal activity on short timescales.
Copyright © 2017 Elsevier Ltd. All rights reserved.
Similar articles
-
Hebbian plasticity requires compensatory processes on multiple timescales.Philos Trans R Soc Lond B Biol Sci. 2017 Mar 5;372(1715):20160259. doi: 10.1098/rstb.2016.0259. Philos Trans R Soc Lond B Biol Sci. 2017. PMID: 28093557 Free PMC article. Review.
-
Presynaptic inhibition rapidly stabilises recurrent excitation in the face of plasticity.PLoS Comput Biol. 2020 Aug 7;16(8):e1008118. doi: 10.1371/journal.pcbi.1008118. eCollection 2020 Aug. PLoS Comput Biol. 2020. PMID: 32764742 Free PMC article.
-
Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning.Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):7113-7122. doi: 10.1073/pnas.1820690116. Epub 2019 Feb 19. Proc Natl Acad Sci U S A. 2019. PMID: 30782829 Free PMC article.
-
Homeostatic Plasticity Achieved by Incorporation of Random Fluctuations and Soft-Bounded Hebbian Plasticity in Excitatory Synapses.Front Neural Circuits. 2016 Jun 1;10:42. doi: 10.3389/fncir.2016.00042. eCollection 2016. Front Neural Circuits. 2016. PMID: 27313513 Free PMC article.
-
Homeostatic plasticity in the CNS: synaptic and intrinsic forms.J Physiol Paris. 2003 Jul-Nov;97(4-6):391-402. doi: 10.1016/j.jphysparis.2004.01.005. J Physiol Paris. 2003. PMID: 15242651 Review.
Cited by
-
Malleability of the cortical hand map following a finger nerve block.Sci Adv. 2022 Apr 22;8(16):eabk2393. doi: 10.1126/sciadv.abk2393. Epub 2022 Apr 22. Sci Adv. 2022. PMID: 35452294 Free PMC article.
-
Thalamocortical contribution to flexible learning in neural systems.Netw Neurosci. 2022 Oct 1;6(4):980-997. doi: 10.1162/netn_a_00235. eCollection 2022. Netw Neurosci. 2022. PMID: 36875011 Free PMC article.
-
Lifelong Learning of Spatiotemporal Representations With Dual-Memory Recurrent Self-Organization.Front Neurorobot. 2018 Nov 28;12:78. doi: 10.3389/fnbot.2018.00078. eCollection 2018. Front Neurorobot. 2018. PMID: 30546302 Free PMC article.
-
A biophysical perspective on the resilience of neuronal excitability across timescales.Nat Rev Neurosci. 2023 Oct;24(10):640-652. doi: 10.1038/s41583-023-00730-9. Epub 2023 Aug 24. Nat Rev Neurosci. 2023. PMID: 37620600 Review.
-
Behavioral gain following isolation of attention.Sci Rep. 2021 Sep 29;11(1):19329. doi: 10.1038/s41598-021-98670-w. Sci Rep. 2021. PMID: 34588526 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
