Folding of Immunogenic Peptide Fragments of Proteins in Water Solution. I. Sequence Requirements for the Formation of a Reverse Turn

J Mol Biol. 1988 May 5;201(1):161-200. doi: 10.1016/0022-2836(88)90446-9.


A systematic examination by 1H nuclear magnetic resonance of the population of beta-turn-containing conformers in several series of short linear peptides in water solution has demonstrated a dependence on amino acid sequence which has important implications for initiation of protein folding. The peptides consist of a number of variants of the sequence Tyr-Pro-Tyr-Asp, the trans isomer of which was previously shown to contain a reverse turn in water. Two-dimensional rotating-frame nuclear Overhauser effect spectroscopy provides unequivocal evidence that substantial populations of reverse turn conformations occur in water solutions of certain of these peptides. In the unfolded state, the peptides adopt predominantly extended chain (beta) conformations in water. It appears probable from the nuclear Overhauser effect connectivities observed that the reverse turns in the trans isomers are predominantly type II. The low temperature coefficient of the amide proton resonance of the residue at position 4 of the turn suggests the presence of an intramolecular hydrogen bond. The presence of the beta-turn conformation has been confirmed for certain peptides by circular dichroism measurements. Substitutions at positions 3 and 4 in the sequence Tyr-Pro-Tyr-Asp-Val can enhance or abolish the beta-turn population in the trans peptide isomers. The residue at position 3 of the turn is the primary determinant of its stability. A small amount of additional stabilization appears to result from an electrostatic interaction between the side-chain of residue 4 and the unblocked amino terminus. For peptides of the series Tyr-Pro-X-Asp-Val, where X represents all L-amino acid except Trp and Pro, the temperature coefficient of the Asp4 amide proton resonance provides a measure of the beta-turn population. The beta-turn populations in water solution measured in this way correlate with the beta-turn probabilities determined from protein crystal structures. This indicates that it is frequently the local amino acid sequence, rather than medium- to long-range interactions in the folded protein, that determines the beta-turn conformation in the folded state. Such sequences are excellent candidates for protein folding initiation sites. A high population of structured forms appears to be present in the cis isomer of certain of the peptides, as shown by a considerable increase in the proportion of the cis isomer and by measurement of nuclear Overhauser effects and 3JN alpha coupling constants.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Circular Dichroism
  • Hydrogen-Ion Concentration
  • Magnetic Resonance Spectroscopy
  • Oligopeptides*
  • Peptide Fragments* / immunology
  • Protein Conformation
  • Protons
  • Solutions
  • Stereoisomerism
  • Temperature
  • Water


  • Oligopeptides
  • Peptide Fragments
  • Protons
  • Solutions
  • Water