The effect of K+ cations on the phase transitions, and structural, dielectric and luminescence properties of [cat][K0.5Cr0.5(HCOO)3], where cat is protonated dimethylamine or ethylamine

Phys Chem Chem Phys. 2017 May 17;19(19):12156-12166. doi: 10.1039/c7cp01336a.

Abstract

We report the synthesis, crystal structure, and dielectric, vibrational and emission spectra of two novel heterometallic perovskite-type metal-organic frameworks (MOFs) of the following formula: [(CH3)2NH2][K0.5Cr0.5(HCOO)3] (DMAKCr) and [C2H5NH3][K0.5Cr0.5(HCOO)3] (EtAKCr). DMAKCr crystallizes in a trigonal structure (R3[combining macron] space group) and undergoes an order-disorder phase transition to the monoclinic system (P1[combining macron] space group) at about 190 K. The dielectric studies confirm the presence of first-order relaxor-like structural transformation. In the high-temperature phase, the dimethylammonium cations are dynamically disordered over three equal positions and upon cooling the dynamical disorder evolves into a two-fold one. This partial ordering is accompanied by a small distortion of the metal-formate framework. EtAKCr crystallizes in a monoclinic structure (P21/n space group) with ordered EtA+ cations and does not experience any phase transition. The differences in the thermal behavior caused by the substitution of Na+ ions by larger K+ ions in the [cat]MIMIII (cat = DMA+, EtA+, MI = Na+, K+ and MIII = Cr3+ and Fe3+) heterometallic MOF family are discussed taking into account the impact of the hydrogen bond (HB) pattern and other factors affecting the stability of metal-formate frameworks. The optical studies show that DMANaCr and EtAKCr exhibit Cr3+-based emission characteristics for intermediate ligand field strength.