Cholesterol Efflux Capacity, High-Density Lipoprotein Particle Number, and Incident Cardiovascular Events: An Analysis From the JUPITER Trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin)

Circulation. 2017 Jun 20;135(25):2494-2504. doi: 10.1161/CIRCULATIONAHA.116.025678. Epub 2017 Apr 27.


Background: Recent failures of drugs that raised high-density lipoprotein (HDL) cholesterol levels to reduce cardiovascular events in clinical trials have led to increased interest in alternative indices of HDL quality, such as cholesterol efflux capacity, and HDL quantity, such as HDL particle number. However, no studies have directly compared these metrics in a contemporary population that includes potent statin therapy and low low-density lipoprotein cholesterol.

Methods: HDL cholesterol levels, apolipoprotein A-I, cholesterol efflux capacity, and HDL particle number were assessed at baseline and 12 months in a nested case-control study of the JUPITER trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin), a randomized primary prevention trial that compared rosuvastatin treatment to placebo in individuals with normal low-density lipoprotein cholesterol but increased C-reactive protein levels. In total, 314 cases of incident cardiovascular disease (CVD) (myocardial infarction, unstable angina, arterial revascularization, stroke, or cardiovascular death) were compared to age- and gender-matched controls. Conditional logistic regression models adjusting for risk factors evaluated associations between HDL-related biomarkers and incident CVD.

Results: Cholesterol efflux capacity was moderately correlated with HDL cholesterol, apolipoprotein A-I, and HDL particle number (Spearman r= 0.39, 0.48, and 0.39 respectively; P<0.001). Baseline HDL particle number was inversely associated with incident CVD (adjusted odds ratio per SD increment [OR/SD], 0.69; 95% confidence interval [CI], 0.56-0.86; P<0.001), whereas no significant association was found for baseline cholesterol efflux capacity (OR/SD, 0.89; 95% CI, 0.72-1.10; P=0.28), HDL cholesterol (OR/SD, 0.82; 95% CI, 0.66-1.02; P=0.08), or apolipoprotein A-I (OR/SD, 0.83; 95% CI, 0.67-1.03; P=0.08). Twelve months of rosuvastatin (20 mg/day) did not change cholesterol efflux capacity (average percentage change -1.5%, 95% CI, -13.3 to +10.2; P=0.80), but increased HDL cholesterol (+7.7%), apolipoprotein A-I (+4.3%), and HDL particle number (+5.2%). On-statin cholesterol efflux capacity was inversely associated with incident CVD (OR/SD, 0.62; 95% CI, 0.42-0.92; P=0.02), although HDL particle number again emerged as the strongest predictor (OR/SD, 0.51; 95% CI, 0.33-0.77; P<0.001).

Conclusions: In JUPITER, cholesterol efflux capacity was associated with incident CVD in individuals on potent statin therapy but not at baseline. For both baseline and on-statin analyses, HDL particle number was the strongest of 4 HDL-related biomarkers as an inverse predictor of incident events and biomarker of residual risk.

Clinical trial registration: URL: Unique identifier: NCT00239681.

Keywords: cardiovascular disease risk factors; high-density lipoprotein cholesterol.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Aged
  • Cardiovascular Diseases / blood*
  • Cardiovascular Diseases / epidemiology
  • Cardiovascular Diseases / prevention & control*
  • Case-Control Studies
  • Cholesterol, HDL / antagonists & inhibitors
  • Cholesterol, HDL / blood*
  • Double-Blind Method
  • Female
  • Humans
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors / pharmacology
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors / therapeutic use*
  • Incidence
  • Lipoproteins, HDL / antagonists & inhibitors
  • Lipoproteins, HDL / blood*
  • Male
  • Middle Aged
  • Rosuvastatin Calcium / pharmacology
  • Rosuvastatin Calcium / therapeutic use*


  • Cholesterol, HDL
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors
  • Lipoproteins, HDL
  • Rosuvastatin Calcium

Associated data