Pressure-induced iso-structural phase transition and metallization in WSe2

Sci Rep. 2017 May 4:7:46694. doi: 10.1038/srep46694.

Abstract

We present in situ high-pressure synchrotron X-ray diffraction (XRD) and Raman spectroscopy study, and electrical transport measurement of single crystal WSe2 in diamond anvil cells with pressures up to 54.0-62.8 GPa. The XRD and Raman results show that the phase undergoes a pressure-induced iso-structural transition via layer sliding, beginning at 28.5 GPa and not being completed up to around 60 GPa. The Raman data also reveals a dominant role of the in-plane strain over the out-of plane compression in helping achieve the transition. Consistently, the electrical transport experiments down to 1.8 K reveals a pressure-induced metallization for WSe2 through a broad pressure range of 28.2-61.7 GPa, where a mixed semiconducting and metallic feature is observed due to the coexisting low- and high-pressure structures.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't