Energy Metabolism of the Osteoblast: Implications for Osteoporosis
- PMID: 28472361
- PMCID: PMC5460680
- DOI: 10.1210/er.2017-00064
Energy Metabolism of the Osteoblast: Implications for Osteoporosis
Abstract
Osteoblasts, the bone-forming cells of the remodeling unit, are essential for growth and maintenance of the skeleton. Clinical disorders of substrate availability (e.g., diabetes mellitus, anorexia nervosa, and aging) cause osteoblast dysfunction, ultimately leading to skeletal fragility and osteoporotic fractures. Conversely, anabolic treatments for osteoporosis enhance the work of the osteoblast by altering osteoblast metabolism. Emerging evidence supports glycolysis as the major metabolic pathway to meet ATP demand during osteoblast differentiation. Glut1 and Glut3 are the principal transporters of glucose in osteoblasts, although Glut4 has also been implicated. Wnt signaling induces osteoblast differentiation and activates glycolysis through mammalian target of rapamycin, whereas parathyroid hormone stimulates glycolysis through induction of insulin-like growth factor-I. Glutamine is an alternate fuel source for osteogenesis via the tricarboxylic acid cycle, and fatty acids can be metabolized to generate ATP via oxidative phosphorylation although temporal specificity has not been established. More studies with new model systems are needed to fully understand how the osteoblast utilizes fuel substrates in health and disease and how that impacts metabolic bone diseases.
Copyright © 2017 Endocrine Society.
Figures
Similar articles
-
Increased glycolysis mediates Wnt7b-induced bone formation.FASEB J. 2019 Jul;33(7):7810-7821. doi: 10.1096/fj.201900201RR. Epub 2019 Mar 26. FASEB J. 2019. PMID: 30913395 Free PMC article.
-
Wnt signaling and cellular metabolism in osteoblasts.Cell Mol Life Sci. 2017 May;74(9):1649-1657. doi: 10.1007/s00018-016-2425-5. Epub 2016 Nov 26. Cell Mol Life Sci. 2017. PMID: 27888287 Free PMC article. Review.
-
Osteoblasts in osteoporosis: past, emerging, and future anabolic targets.Eur J Endocrinol. 2011 Jul;165(1):1-10. doi: 10.1530/EJE-11-0132. Epub 2011 May 4. Eur J Endocrinol. 2011. PMID: 21543379 Review.
-
Osteoblast Bioenergetics and Global Energy Homeostasis.Nestle Nutr Inst Workshop Ser. 2018;89:47-54. doi: 10.1159/000486492. Epub 2018 Jul 10. Nestle Nutr Inst Workshop Ser. 2018. PMID: 29991031
-
Glucose transporters GLUT1, GLUT3, and GLUT4 have different effects on osteoblast proliferation and metabolism.Front Physiol. 2022 Nov 29;13:1035516. doi: 10.3389/fphys.2022.1035516. eCollection 2022. Front Physiol. 2022. PMID: 36523556 Free PMC article.
Cited by
-
Nitric oxide and bone: The phoenix rises again.J Clin Invest. 2021 Mar 1;131(5):e147072. doi: 10.1172/JCI147072. J Clin Invest. 2021. PMID: 33645546 Free PMC article.
-
Regulation of bone homeostasis: signaling pathways and therapeutic targets.MedComm (2020). 2024 Jul 24;5(8):e657. doi: 10.1002/mco2.657. eCollection 2024 Aug. MedComm (2020). 2024. PMID: 39049966 Free PMC article. Review.
-
Cytisine attenuates bone loss of ovariectomy mouse by preventing RANKL-induced osteoclastogenesis.J Cell Mol Med. 2020 Sep;24(17):10112-10127. doi: 10.1111/jcmm.15622. Epub 2020 Aug 13. J Cell Mol Med. 2020. PMID: 32790170 Free PMC article.
-
Combined Effects of Cyclic Hypoxic and Mechanical Stimuli on Human Bone Marrow Mesenchymal Stem Cell Differentiation: A New Approach to the Treatment of Bone Loss.J Clin Med. 2024 Sep 28;13(19):5805. doi: 10.3390/jcm13195805. J Clin Med. 2024. PMID: 39407866 Free PMC article.
-
Discovery of Potential Biomarkers for Postmenopausal Osteoporosis Based on Untargeted GC/LC-MS.Front Endocrinol (Lausanne). 2022 Apr 19;13:849076. doi: 10.3389/fendo.2022.849076. eCollection 2022. Front Endocrinol (Lausanne). 2022. PMID: 35518930 Free PMC article.
References
-
- Borle AB, Nichols N, Nichols G Jr. Metabolic studies of bone in vitro. I. Normal bone. J Biol Chem. 1960;235:1206–1210. - PubMed
-
- Cohn DV, Forscher BK. Aerobic metabolism of glucose by bone. J Biol Chem. 1962;237:615–618. - PubMed
-
- Peck WA, Birge SJ Jr, Fedak SA. Bone Cells: Biochemical and Biological Studies after Enzymatic Isolation. Science. 1964;146(3650):1476–1477. - PubMed
-
- Peck WA, Birge SJ Jr, Brandt J. Collagen synthesis by isolated bone cells: stimulation by ascorbic acid in vitro. Biochim Biophys Acta. 1967;142(2):512–525. - PubMed
-
- Gerstenfeld LC, Chipman SD, Glowacki J, Lian JB. Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Dev Biol. 1987;122(1):49–60. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
