Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus

Nucleic Acids Res. 2017 Jun 20;45(11):6507-6519. doi: 10.1093/nar/gkx308.


DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages.

MeSH terms

  • Bacteriophages / physiology*
  • DNA Replication
  • DNA-Binding Proteins / physiology
  • Mutation
  • Recombinases / physiology*
  • Staphylococcus aureus / virology*
  • Viral Proteins / physiology*
  • Virus Replication*


  • DNA-Binding Proteins
  • Recombinases
  • Viral Proteins