Endothelial TLR4 and the microbiome drive cerebral cavernous malformations
- PMID: 28489816
- PMCID: PMC5757866
- DOI: 10.1038/nature22075
Endothelial TLR4 and the microbiome drive cerebral cavernous malformations
Abstract
Cerebral cavernous malformations (CCMs) are a cause of stroke and seizure for which no effective medical therapies yet exist. CCMs arise from the loss of an adaptor complex that negatively regulates MEKK3-KLF2/4 signalling in brain endothelial cells, but upstream activators of this disease pathway have yet to be identified. Here we identify endothelial Toll-like receptor 4 (TLR4) and the gut microbiome as critical stimulants of CCM formation. Activation of TLR4 by Gram-negative bacteria or lipopolysaccharide accelerates CCM formation, and genetic or pharmacologic blockade of TLR4 signalling prevents CCM formation in mice. Polymorphisms that increase expression of the TLR4 gene or the gene encoding its co-receptor CD14 are associated with higher CCM lesion burden in humans. Germ-free mice are protected from CCM formation, and a single course of antibiotics permanently alters CCM susceptibility in mice. These studies identify unexpected roles for the microbiome and innate immune signalling in the pathogenesis of a cerebrovascular disease, as well as strategies for its treatment.
Conflict of interest statement
The authors declare no competing financial interests.
Figures
Comment in
-
Cerebrovascular malformations: Microbiota promotes cerebral cavernous malformations.Nat Rev Neurol. 2017 Jul;13(7):386. doi: 10.1038/nrneurol.2017.79. Epub 2017 May 26. Nat Rev Neurol. 2017. PMID: 28548106 No abstract available.
-
Gut Microbiome and Endothelial TLR4 Activation Provoke Cerebral Cavernous Malformations.Neurosurgery. 2017 Nov 1;81(5):N44-N46. doi: 10.1093/neuros/nyx450. Neurosurgery. 2017. PMID: 29088464 No abstract available.
Similar articles
-
Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling.Nature. 2016 Apr 7;532(7597):122-6. doi: 10.1038/nature17178. Epub 2016 Mar 30. Nature. 2016. PMID: 27027284 Free PMC article.
-
Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation.Sci Transl Med. 2019 Nov 27;11(520):eaaw3521. doi: 10.1126/scitranslmed.aaw3521. Sci Transl Med. 2019. PMID: 31776290 Free PMC article.
-
Low fluid shear stress conditions contribute to activation of cerebral cavernous malformation signalling pathways.Biochim Biophys Acta Mol Basis Dis. 2019 Nov 1;1865(11):165519. doi: 10.1016/j.bbadis.2019.07.013. Epub 2019 Jul 29. Biochim Biophys Acta Mol Basis Dis. 2019. PMID: 31369819
-
Blocking Signalopathic Events to Treat Cerebral Cavernous Malformations.Trends Mol Med. 2020 Sep;26(9):874-887. doi: 10.1016/j.molmed.2020.03.003. Epub 2020 Apr 3. Trends Mol Med. 2020. PMID: 32692314 Review.
-
Signalling through cerebral cavernous malformation protein networks.Open Biol. 2020 Nov;10(11):200263. doi: 10.1098/rsob.200263. Epub 2020 Nov 25. Open Biol. 2020. PMID: 33234067 Free PMC article. Review.
Cited by
-
Toll-like receptor 4 deletion partially protects mice from high fat diet-induced arterial stiffness despite perturbation to the gut microbiota.Front Microbiomes. 2023;2:1095997. doi: 10.3389/frmbi.2023.1095997. Epub 2023 May 23. Front Microbiomes. 2023. PMID: 39323483 Free PMC article.
-
The gut microbiota in thrombosis.Nat Rev Cardiol. 2024 Sep 17. doi: 10.1038/s41569-024-01070-6. Online ahead of print. Nat Rev Cardiol. 2024. PMID: 39289543 Review.
-
Discovering common pathogenetic processes between periodontitis and Alzheimer's disease by bioinformatics and system biology approach.BMC Oral Health. 2024 Sep 12;24(1):1074. doi: 10.1186/s12903-024-04775-9. BMC Oral Health. 2024. PMID: 39266981 Free PMC article.
-
Except for Robust Outliers, Rapamycin Increases Lesion Burden in a Murine Model of Cerebral Cavernous Malformations.Transl Stroke Res. 2024 Jul 9. doi: 10.1007/s12975-024-01270-9. Online ahead of print. Transl Stroke Res. 2024. PMID: 38980519
-
From Gut Microbiomes to Infectious Pathogens: Neurological Disease Game Changers.Mol Neurobiol. 2024 Jul 5. doi: 10.1007/s12035-024-04323-0. Online ahead of print. Mol Neurobiol. 2024. PMID: 38967904 Review.
References
-
- Fischer A, Zalvide J, Faurobert E, Albiges-Rizo C, Tournier-Lasserve E. Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol Med. 2013;19:302–308. - PubMed
-
- Plummer NW, Zawistowski JS, Marchuk DA. Genetics of cerebral cavernous malformations. Curr Neurol Neurosci Rep. 2005;5:391–396. - PubMed
-
- Denier C, et al. Clinical features of cerebral cavernous malformations patients with KRIT1 mutations. Ann Neurol. 2004;55:213–220. - PubMed
-
- Denier C, et al. Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol. 2006;60:550–556. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- P01 NS092521/NS/NINDS NIH HHS/United States
- T32 HL007439/HL/NHLBI NIH HHS/United States
- R01 NS100949/NS/NINDS NIH HHS/United States
- U54 NS065705/NS/NINDS NIH HHS/United States
- R01 NS075168/NS/NINDS NIH HHS/United States
- R21 DK111755/DK/NIDDK NIH HHS/United States
- T32 DK007780/DK/NIDDK NIH HHS/United States
- F06 TW002300/TW/FIC NIH HHS/United States
- T32HL07439/National Institute of Health/International
- F30 NS100252/NS/NINDS NIH HHS/United States
- T32 GM008076/GM/NIGMS NIH HHS/United States
- R01 HL136572/HL/NHLBI NIH HHS/United States
- R01 HL102138/HL/NHLBI NIH HHS/United States
- R21 AI128060/AI/NIAID NIH HHS/United States
- R01 HL094326/HL/NHLBI NIH HHS/United States
- P30 DK019525/DK/NIDDK NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
