The Cox1 C-terminal domain is a central regulator of cytochrome c oxidase biogenesis in yeast mitochondria

J Biol Chem. 2017 Jun 30;292(26):10912-10925. doi: 10.1074/jbc.M116.773077. Epub 2017 May 10.

Abstract

Cytochrome c oxidase (CcO) is the last electron acceptor in the respiratory chain. The CcO core is formed by mitochondrial DNA-encoded Cox1, Cox2, and Cox3 subunits. Cox1 synthesis is highly regulated; for example, if CcO assembly is blocked, Cox1 synthesis decreases. Mss51 activates translation of COX1 mRNA and interacts with Cox1 protein in high-molecular-weight complexes (COA complexes) to form the Cox1 intermediary assembly module. Thus, Mss51 coordinates both Cox1 synthesis and assembly. We previously reported that the last 15 residues of the Cox1 C terminus regulate Cox1 synthesis by modulating an interaction of Mss51 with Cox14, another component of the COA complexes. Here, using site-directed mutagenesis of the mitochondrial COX1 gene from Saccharomyces cerevisiae, we demonstrate that mutations P521A/P522A and V524E disrupt the regulatory role of the Cox1 C terminus. These mutations, as well as C terminus deletion (Cox1ΔC15), reduced binding of Mss51 and Cox14 to COA complexes. Mss51 was enriched in a translationally active form that maintains full Cox1 synthesis even if CcO assembly is blocked in these mutants. Moreover, Cox1ΔC15, but not Cox1-P521A/P522A and Cox1-V524E, promoted formation of aberrant supercomplexes in CcO assembly mutants lacking Cox2 or Cox4 subunits. The aberrant supercomplex formation depended on the presence of cytochrome b and Cox3, supporting the idea that supercomplex assembly factors associate with Cox3 and demonstrating that supercomplexes can be formed even if CcO is inactive and not fully assembled. Our results indicate that the Cox1 C-terminal end is a key regulator of CcO biogenesis and that it is important for supercomplex formation/stability.

Keywords: Cox1; Mss51; cytochrome c oxidase (complex IV); mitochondria; mitochondrial DNA (mtDNA); supercomplex; translation; yeast.

MeSH terms

  • Amino Acid Substitution
  • Electron Transport Complex IV / genetics
  • Electron Transport Complex IV / metabolism*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Mitochondria / enzymology*
  • Mitochondria / genetics
  • Mitochondrial Proteins / genetics
  • Mitochondrial Proteins / metabolism
  • Mutation, Missense
  • Saccharomyces cerevisiae / enzymology*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • COX14 protein, S cerevisiae
  • Membrane Proteins
  • Mitochondrial Proteins
  • Mss51 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Transcription Factors
  • cytochrome C oxidase subunit II
  • COX3 protein, S cerevisiae
  • Cox1 protein, S cerevisiae
  • Cox4 protein, S cerevisiae
  • Electron Transport Complex IV