Spatial Asymmetry and Short-Term Suppression Underlie Direction Selectivity of Synaptic Excitation in the Mouse Visual Cortex

Cereb Cortex. 2018 Jun 1;28(6):2059-2070. doi: 10.1093/cercor/bhx111.


Direction selectivity (DS) of neuronal responses is fundamental for motion detection. With in vivo whole-cell voltage-clamp recordings from layer (L)4 neurons in the mouse visual cortex, we observed a strong correlation between DS and spatial asymmetry in the distribution of excitatory input strengths. This raises an interesting possibility that the latter may contribute to DS. The preferred direction of excitatory input was found from the stronger to weaker side of its spatial receptive field. A simple linear summation of asymmetrically distributed excitatory responses to stationary flash stimuli however failed to predict the correct directionality: it at best resulted in weak DS with preferred direction opposite to what was observed experimentally. Further studies with sequential 2 flash-bar stimulation revealed a short-term suppression of excitatory input evoked by the late bar. More importantly, the level of the suppression positively correlated with the relative amplitude of the early-bar response. Implementing this amplitude-dependent suppressive interaction can successfully predict DS of excitatory input. Our results suggest that via nonlinear temporal interactions, the spatial asymmetry can be transformed into differential temporal integration of inputs under opposite directional movements. This mechanism may contribute to the DS of excitatory inputs to L4 neurons.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Female
  • Mice
  • Mice, Inbred C57BL
  • Models, Neurological
  • Motion Perception / physiology*
  • Neurons / physiology
  • Photic Stimulation
  • Visual Cortex / physiology*