Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 1;27(8):701-712.
doi: 10.1093/glycob/cwx044.

Asn-linked oligosaccharide chain of a crenarchaeon, Pyrobaculum calidifontis, is reminiscent of the eukaryotic high-mannose-type glycan

Affiliations

Asn-linked oligosaccharide chain of a crenarchaeon, Pyrobaculum calidifontis, is reminiscent of the eukaryotic high-mannose-type glycan

Daisuke Fujinami et al. Glycobiology. .

Abstract

Pyrobaculum calidifontis is a hyperthermophilic archaeon that belongs to the phylum Crenarchaeota. In contrast to the phylum Euryarchaeota, only the N-glycan structure of the genus Sulfolobus is known in Crenarchaeota. Here, we enriched glycoproteins from cultured P. calidifontis cells, by ConA lectin chromatography. The MASCOT search identified proteins with at least one potential N-glycosylation site. The tandem mass spectrometry (MS/MS) analysis of 12 small tryptic glycopeptides confirmed the canonical N-glycosylation consensus in P. calidifontis. We determined the N-linked oligosaccharide structure produced by an in vitro enzymatic oligosaccharyl transfer reaction. Pyrobaculum calidifontis cells were cultured in rich medium supplemented with 13C-glucose, for the metabolic labeling of N-oligosaccharide donors. An incubation with a synthetic peptide substrate produced glycopeptides with isotopically labeled oligosaccharide moieties. The MS and nuclear magnetic resonance analyses revealed that the P. calidifontisN-glycan has a biantennary, high-mannose-type structure consisting of up to 11 monosaccharide residues. The base portion of the P. calidifontisN-glycan strongly resembles the eukaryotic core structure, α-Man-(1-3)-(α-Man-(1-6)-)β-Man-(1-4)-β-GlcNAc-(1-4)-β-GlcNAc-Asn. Structural differences exist in the anomeric configuration between Man and GlcNAc, and the chitobiose structure is chemically modified: one GlcNAc residue is oxidized to glucoronate, and the GlcNAc residues are both modified with an additional acetamido group at the C-3 position. As a result, the core structure of the P. calidifontisN-glycan is α-Man-(1-3)-(α-Man-(1-6)-)α-Man-(1-4)-β-GlcANAc3NAc-(1-4)-β-GlcNAc3NAc-Asn, in which the unique features of the P. calidifontisN-glycan are underlined. In spite of these differences, the structure of the P. calidifontisN-glycan is the most similar to the eukaryotic counterparts, among all archaeal N-glycans reported to date.

Keywords: N-oligosaccharide structure; Pyrobaculum calidifontis; Creanarchaeota; glycoproteins; metabolic labeling of N-oligosaccharide donor.

PubMed Disclaimer

Similar articles

Cited by