The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention
- PMID: 28525753
- PMCID: PMC5502809
- DOI: 10.1016/j.cell.2017.05.003
The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention
Abstract
Maintenance of proper levels of the methyl donor S-adenosylmethionine (SAM) is critical for a wide variety of biological processes. We demonstrate that the N6-adenosine methyltransferase METTL16 regulates expression of human MAT2A, which encodes the SAM synthetase expressed in most cells. Upon SAM depletion by methionine starvation, cells induce MAT2A expression by enhanced splicing of a retained intron. Induction requires METTL16 and its methylation substrate, a vertebrate conserved hairpin (hp1) in the MAT2A 3' UTR. Increasing METTL16 occupancy on the MAT2A 3' UTR is sufficient to induce efficient splicing. We propose that, under SAM-limiting conditions, METTL16 occupancy on hp1 increases due to inefficient enzymatic turnover, which promotes MAT2A splicing. We further show that METTL16 is the long-unknown methyltransferase for the U6 spliceosomal small nuclear RNA (snRNA). These observations suggest that the conserved U6 snRNA methyltransferase evolved an additional function in vertebrates to regulate SAM homeostasis.
Keywords: Intron retention; MAT2A; METTL16; N6-methyladenosine (m(6)A); RNA methylation; S-adenosylmethionine (SAM); SAM metabolism; U6 snRNA; alternative splicing; methionine.
Copyright © 2017 Elsevier Inc. All rights reserved.
Figures
Similar articles
-
S-Adenosylmethionine Synthesis Is Regulated by Selective N6-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1.Cell Rep. 2017 Dec 19;21(12):3354-3363. doi: 10.1016/j.celrep.2017.11.092. Cell Rep. 2017. PMID: 29262316
-
SAM homeostasis is regulated by CFIm-mediated splicing of MAT2A.Elife. 2021 May 5;10:e64930. doi: 10.7554/eLife.64930. Elife. 2021. PMID: 33949310 Free PMC article.
-
Functional analysis of 3'-UTR hairpins supports a two-tiered model for posttranscriptional regulation of MAT2A by METTL16.RNA. 2023 Nov;29(11):1725-1737. doi: 10.1261/rna.079695.123. Epub 2023 Aug 11. RNA. 2023. PMID: 37567786
-
RNA methyltransferase METTL16: Targets and function.Wiley Interdiscip Rev RNA. 2022 Mar;13(2):e1681. doi: 10.1002/wrna.1681. Epub 2021 Jul 6. Wiley Interdiscip Rev RNA. 2022. PMID: 34227247 Free PMC article. Review.
-
METTL16, Methyltransferase-Like Protein 16: Current Insights into Structure and Function.Int J Mol Sci. 2021 Feb 22;22(4):2176. doi: 10.3390/ijms22042176. Int J Mol Sci. 2021. PMID: 33671635 Free PMC article. Review.
Cited by
-
The role of RNA-modifying proteins in renal cell carcinoma.Cell Death Dis. 2024 Mar 19;15(3):227. doi: 10.1038/s41419-024-06479-y. Cell Death Dis. 2024. PMID: 38503745 Review.
-
Advances in epigenetic alterations of chronic lymphocytic leukemia: from pathogenesis to treatment.Clin Exp Med. 2024 Mar 16;24(1):54. doi: 10.1007/s10238-023-01268-x. Clin Exp Med. 2024. PMID: 38492089 Free PMC article. Review.
-
Regulation of inflammatory diseases via the control of mRNA decay.Inflamm Regen. 2024 Mar 15;44(1):14. doi: 10.1186/s41232-024-00326-5. Inflamm Regen. 2024. PMID: 38491500 Free PMC article. Review.
-
RNA Metabolism Governs Immune Function and Response.Adv Exp Med Biol. 2024;1444:145-161. doi: 10.1007/978-981-99-9781-7_10. Adv Exp Med Biol. 2024. PMID: 38467978 Review.
-
RNA m6A methylation and regulatory proteins in pulmonary arterial hypertension.Hypertens Res. 2024 Mar 4. doi: 10.1038/s41440-024-01607-9. Online ahead of print. Hypertens Res. 2024. PMID: 38438725 Review.
References
-
- Amit M, Donyo M, Hollander D, Goren A, Kim E, Gelfman S, Lev-Maor G, Burstein D, Schwartz S, Postolsky B, et al. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell reports. 2012;1:543–556. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
