Background: The gut microbiome is the full set of microbes living in the gastrointestinal tract and is emerging as an important dynamic/fluid system that, if altered by environmental, dietetic or pharmacological factors, could considerably influence drug response. However, the immunosuppressive drug-induced modifications of this system are still poorly defined.
Methods: We employed an innovative bioinformatics approach to assess differences in the whole-gut microbial metagenomic profile of 20 renal transplant recipients undergoing maintenance treatment with two different immunosuppressive protocols. Nine patients were treated with everolimus plus mycophenolate mofetil (EVE+MMF group), and 11 patients were treated with a standard therapy with tacrolimus plus mycophenolate mofetil (TAC+MMF group).
Results: A statistical analysis of comparative high-throughput data demonstrated that although similar according to the degree of Shannon diversity (alpha diversity) at the taxonomic level, three functional genes clearly discriminated EVE+MMF versus TAC+MMF (cutoff: log2 fold change≥1, FDR≤0.05). Flagellar motor switch protein (fliNY) and type IV pilus assembly protein pilM (pilM) were significantly enriched in TAC+MMF-treated patients, while macrolide transport system mrsA (msrA) was more abundant in patients treated with EVE+MMF. Finally, PERMANOVA revealed that among the variables analyzed and included in our model, only the consumption of sugar significantly influenced beta diversity.
Conclusions: Our study, although performed on a relatively small number of patients, showed, for the first time, specific immunosuppressive-related effects on fecal microbiome of renal transplant recipients and it suggested that the analysis of the gut microbes community could represent a new tool to better understand the effects of drugs currently employed in organ transplantations. However, multicenter studies including healthy controls should be undertaken to better address this objective.