Gene Set Enrichment Analyses: lessons learned from the heart failure phenotype

BioData Min. 2017 May 26:10:18. doi: 10.1186/s13040-017-0137-5. eCollection 2017.

Abstract

Background: Genetic studies for complex diseases have predominantly discovered main effects at individual loci, but have not focused on genomic and environmental contexts important for a phenotype. Gene Set Enrichment Analysis (GSEA) aims to address this by identifying sets of genes or biological pathways contributing to a phenotype, through gene-gene interactions or other mechanisms, which are not the focus of conventional association methods.

Results: Approaches that utilize GSEA can now take input from array chips, either gene-centric or genome-wide, but are highly sensitive to study design, SNP selection and pruning strategies, SNP-to-gene mapping, and pathway definitions. Here, we present lessons learned from our experience with GSEA of heart failure, a particularly challenging phenotype due to its underlying heterogeneous etiology.

Conclusions: This case study shows that proper data handling is essential to avoid false-positive results. Well-defined pipelines for quality control are needed to avoid reporting spurious results using GSEA.

Keywords: Coronary artery disease; Gene set enrichment analyses; Heart failure.