THE EFFECTS OF THE MATING SYSTEM ON PROGENY PERFORMANCE IN HYLA CRUCIFER (ANURA: HYLIDAE)

Evolution. 1988 Jul;42(4):784-794. doi: 10.1111/j.1558-5646.1988.tb02496.x.

Abstract

We performed a controlled mating experiment to determine whether genetic variation in larval traits in Hyla crucifer was predictable on the basis of mating status or body size of male parent. Larval growth rate was predictably related to body size of the sire. Males from the upper half of the body-size distribution sired offspring with 6% higher growth rates than those of offspring sired by males from the lower half of the body-size distribution. Offspring sired by males that obtained mates in nature had 3% higher growth rates than their half-siblings sired by males that did not mate in nature. Genetic variation for larval-period duration and size at metamorphosis was detected; however, neither mating status nor body size of sire could be used to predict values of these traits in the progeny. Although all three larval traits can affect fitness, there was no evidence that the offspring of some sires would always outperform the offspring of others in all three traits. The predictable association between adult male size and larval growth rate means that the H. crucifer mating system would have a directional effect on larval growth rate if male body size influences the outcome of male-male competition or female choice.