SYSTEMATICS AND POPULATION GENETICS OF FIRE ANTS (SOLENOPSIS SAEVISSIMA COMPLEX) FROM ARGENTINA

Evolution. 1990 Dec;44(8):2113-2134. doi: 10.1111/j.1558-5646.1990.tb04316.x.

Abstract

Specimens of seven fire ant species collected from their native ranges in Argentina were studied by protein electrophoresis and morphological analysis. Concordance between the genetic and morphological character sets is strong (96% agreement on identifications), suggesting that recognition of reproductively isolated populations and partitioning of intra- and interspecific variation can in most cases be achieved using appropriate characters of either type in this taxonomically difficult group. Genetic differentiation between native (Argentina) and introduced (USA) conspecific populations of two species, Solenopsis invicta and S. richteri, is rather typical of the differentiation existing between conspecific populations found within either country. Furthermore, there appears to have been little reduction of variability (heterozygosity) at enzyme loci following colonization by either species of the United States, although some rare alleles have been lost in the introduced populations. Hybridization is rare between S. invicta and S. richteri where their native ranges overlap in central Argentina, in contrast to the extensive hybridization of these species in the United States, suggesting that prezygotic barriers to gene flow have been compromised in introduced populations. Phylogenetic analysis of the seven species indicates that S. invicta and S. richteri are relatively distantly related within the S. saevissima complex. Given that hybrids between these species in the United States suffer little apparent loss of fitness, genomic incompatibilities generally may be insufficient to create effective postzygotic barriers to interspecific gene flow in this group of ants.