EVIDENCE FOR GENETIC DIFFERENTIATION BETWEEN CHOKE-INDUCING AND ASYMPTOMATIC STRAINS OF THE EPICHLOË GRASS ENDOPHYTE FROM BRACHYPODIUM SYLVATICUM

Evolution. 1996 Oct;50(5):1879-1887. doi: 10.1111/j.1558-5646.1996.tb03575.x.

Abstract

Life cycle and breeding system variation in Epichloë grass endophytes (choke disease) is tightly linked to the degree of stroma formation. It is not known whether this variation results from differences in host resistance, fungal virulence, or environmental conditions. We found genetic differentiation between 173 asymptomatic (NS) and 93 stromata-forming (S) Epichloë strains isolated from one grass species, Brachypodium sylvaticum, based on 13 presumed allozyme loci, of which six were variable. The fungal strains originated from 10 sites in Switzerland, three sites of which were represented by both NS and S subpopulations. In total, 19 allozyme genotypes, that were nonrandomly distributed among S and NS were detected. Genetic variation measured as GST between S and NS strains isolated from the same site ranged from 0.73 to 0.98. Clonality, measured as linkage disequilibrium at one site, was significant in the NS subpopulation (P ≪ 0.001), but not in the S subpopulation (P = 0.21), implying asexual reproduction by NS strains as well as successful horizontal transmission of S strains. Since all seeds are usually infected vegetatively, horizontal transmission implies the occurrence of multiple host infections. Altogether, these results provide indirect evidence that NS and S strains do not belong to one panmictic population and that differentiation patterns of stroma formation found in nature are due to genetic differences among fungi in associations with their host plants. We discuss the direction of evolution of disease expression in this system. The distribution of genetic variability suggests that the asymptomatic strains were derived from stromata-forming populations.

Keywords: Acremonium; Epichloë; allozymes; grass endophytes; linkage analysis; mode of transmission; stroma formation.