RESPONSES AND CORRELATED RESPONSES TO ARTIFICIAL SELECTION ON THORAX LENGTH IN DROSOPHILA MELANOGASTER

Evolution. 1993 Feb;47(1):213-226. doi: 10.1111/j.1558-5646.1993.tb01211.x.

Abstract

Two sets of four replicate lines of Drosophila melanogaster were selected for large and small thorax with controls. F, progeny of crosses between the selected lines within each size category showed (a) a reduction in preadult viability in large lines relative to control and small lines when they were cultured at medium or high density in competition with a standard mutant marked competitor stock, and (b) an increase in larval development time in large lines relative to control and small lines. Natural selection for increased body size in adults may therefore be opposed by adverse effects on larval viability. The results are discussed in terms of the developmental mechanisms probably responsible for the change in body size. The preadult survival of the large and control lines was measured at three different temperatures, and there was no evidence for a significant interaction between size and temperature. The observed evolutionary increase in body size in response to reduced temperature in Drosophila must therefore involve either different genes from those subject to selection for size at a single temperature, or a fitness component other than preadult survival. There was no significant asymmetry in response to selection, and thorax length showed heterosis in crosses between the selected lines.

Keywords: Body size; Drosophila melanogaster; larval development; temperature.