BUTTERFLIES AND PLANTS: A PHYLOGENETIC STUDY

Evolution. 1998 Apr;52(2):486-502. doi: 10.1111/j.1558-5646.1998.tb01648.x.

Abstract

A database on host plant records from 437 ingroup taxa has been used to test a number of hypotheses on the interaction between butterflies and their host plants using phylogenetic methods (simple character optimization, concentrated changes test, and independent contrasts test). The butterfly phylogeny was assembled from various sources and host plant clades were identified according to Chase et al.'s rbcL-based phylogeny. The ancestral host plant appears to be associated within a highly derived rosid clade, including the family Fabaceae. As fossil data suggest that this clade is older than the butterflies, they must have colonized already diversified plants. Previous studies also suggest that the patterns of association in most insect-plant interactions are more shaped by host shifts, through colonization and specialization, than by cospeciation. Consequently, we have focused explicitly on the mechanisms behind host shifts. Our results confirm, in the light of new phylogenetic evidence, the pattern reported by Ehrlich and Raven that related butterflies feed on related plants. We show that host shifts have generally been more common between closely related plants than between more distantly related plants. This finding, together with the possibility of a higher tendency of recolonizing ancestral hosts, helps to explain the apparent large-scale conservation in the patterns of association between insects and their host plants, patterns which at the same time are more flexible on a more detailed level. Plant growth form was an even more conservative aspect of the interaction between butterflies and their host plants than plant phylogeny. However, this is largely explained by a higher probability of colonizations and host shifts while feeding on trees than on other growth forms.

Keywords: Coevolution; Lepidoptera; Papilionoidea; host shifts; insect-host plant interactions; specialization.