The tricyclic diterpene fungal metabolite (+)-pleuromutilin has served as a starting point for antibiotic development. Semisynthetic modification of its glycolic acid subunit at C14 provided the first analogs fit for human use, and derivatization at C12 led to 12-epi-pleuromutilins with extended-spectrum antibacterial activity, including activity against Gram-negative pathogens. Given the inherent limitations of semisynthesis, however, accessing derivatives of (+)-pleuromutilin with full control over their structure presents an opportunity to develop derivatives with improved antibacterial activities. Here we disclose a modular synthesis of pleuromutilins by the convergent union of an enimide with a bifunctional iodoether. We illustrate our approach through synthesis of (+)-12-epi-mutilin, (+)-11,12-di-epi-mutilin, (+)-12-epi-pleuromutilin, (+)-11,12-di-epi-pleuromutilin, and (+)-pleuromutilin itself in 17 to 20 steps.
Copyright © 2017, American Association for the Advancement of Science.