Pentavalent lanthanide nitride-oxides: NPrO and NPrO- complexes with N[triple bond, length as m-dash]Pr triple bonds

Chem Sci. 2017 May 1;8(5):4035-4043. doi: 10.1039/c7sc00710h. Epub 2017 Mar 15.

Abstract

The neutral molecule NPrO and its anion NPrO- are produced via co-condensation of laser-ablated praseodymium atoms with nitric oxide in a solid neon matrix. Combined infrared spectroscopy and state-of-the-art quantum chemical calculations confirm that both species are pentavalent praseodymium nitride-oxides with linear structures that contain Pr[triple bond, length as m-dash]N triple bonds and Pr[double bond, length as m-dash]O double bonds. Electronic structure studies show that the neutral NPrO molecule features a 4f0 electron configuration and a Pr(v) oxidation state similar to that of the isoelectronic PrO2 + ion, while its NPrO- anion possesses a 4f1 electron configuration and a Pr(iv) oxidation state. The neutral NPrO molecule is thus a rare lanthanide nitride-oxide species with a Pr(v) oxidation state, which follows the recent identification of the first Pr(v) oxidation state in the PrO2 + and PrO4 complexes (Angew. Chem. Int. Ed., 2016, 55, 6896). This finding indicates that lanthanide compounds with oxidation states of higher than +IV are richer in chemistry than previously recognized.