Sensory Metrics of Neuromechanical Trust

Neural Comput. 2017 Sep;29(9):2293-2351. doi: 10.1162/NECO_a_00988. Epub 2017 Jun 9.

Abstract

Today digital sources supply a historically unprecedented component of human sensorimotor data, the consumption of which is correlated with poorly understood maladies such as Internet addiction disorder and Internet gaming disorder. Because both natural and digital sensorimotor data share common mathematical descriptions, one can quantify our informational sensorimotor needs using the signal processing metrics of entropy, noise, dimensionality, continuity, latency, and bandwidth. Such metrics describe in neutral terms the informational diet human brains require to self-calibrate, allowing individuals to maintain trusting relationships. With these metrics, we define the trust humans experience using the mathematical language of computational models, that is, as a primitive statistical algorithm processing finely grained sensorimotor data from neuromechanical interaction. This definition of neuromechanical trust implies that artificial sensorimotor inputs and interactions that attract low-level attention through frequent discontinuities and enhanced coherence will decalibrate a brain's representation of its world over the long term by violating the implicit statistical contract for which self-calibration evolved. Our hypersimplified mathematical understanding of human sensorimotor processing as multiscale, continuous-time vibratory interaction allows equally broad-brush descriptions of failure modes and solutions. For example, we model addiction in general as the result of homeostatic regulation gone awry in novel environments (sign reversal) and digital dependency as a sub-case in which the decalibration caused by digital sensorimotor data spurs yet more consumption of them. We predict that institutions can use these sensorimotor metrics to quantify media richness to improve employee well-being; that dyads and family-size groups will bond and heal best through low-latency, high-resolution multisensory interaction such as shared meals and reciprocated touch; and that individuals can improve sensory and sociosensory resolution through deliberate sensory reintegration practices. We conclude that we humans are the victims of our own success, our hands so skilled they fill the world with captivating things, our eyes so innocent they follow eagerly.

MeSH terms

  • Afferent Pathways / physiology*
  • Algorithms*
  • Calibration
  • Computer Simulation
  • Entropy
  • Humans
  • Models, Biological*
  • Models, Theoretical
  • Motor Skills
  • Neurons / physiology
  • Sensation / physiology*
  • Sensorimotor Cortex / physiology*