Size- and time-dependent growth properties of human induced pluripotent stem cells in the culture of single aggregate

J Biosci Bioeng. 2017 Oct;124(4):469-475. doi: 10.1016/j.jbiosc.2017.05.006. Epub 2017 Jun 7.

Abstract

Aggregate culture of human induced pluripotent stem cells (hiPSCs) is a promising method to obtain high number of cells for cell therapy applications. This study quantitatively evaluated the effects of initial cell number and culture time on the growth of hiPSCs in the culture of single aggregate. Small size aggregates ((1.1 ± 0.4) × 101-(2.8 ± 0.5) × 101 cells/aggregate) showed a lower growth rate in comparison to medium size aggregates ((8.8 ± 0.8) × 101-(6.8 ± 1.1) × 102 cells/aggregate) during early-stage of culture (24-72 h). However, when small size aggregates were cultured in conditioned medium, their growth rate increased significantly. On the other hand, large size aggregates ((1.1 ± 0.2) × 103-(3.5 ± 1.1) × 103 cells/aggregate) showed a lower growth rate and lower expression level of proliferation marker (ki-67) in the center region of aggregate in comparison to medium size aggregate during early-stage of culture. Medium size aggregates showed the highest growth rate during early-stage of culture. Furthermore, hiPSCs proliferation was dependent on culture time because the growth rate decreased significantly during late-stage of culture (72-120 h) at which point collagen type I accumulated on the periphery of aggregate, suggesting blockage of diffusive transport of nutrients, oxygen and metabolites into and out of the aggregates. Consideration of initial cell number and culture time are important to maintain balance between autocrine factors secretion and extracellular matrix accumulation on the aggregate periphery to achieve optimal growth of hiPSCs in the culture of single aggregate.

Keywords: Aggregate heterogeneity; Boundary conditions; Culture of single aggregate; Culture time; Initial cell number; hiPSC aggregate proliferation.

MeSH terms

  • Cell Aggregation* / drug effects
  • Cell Count
  • Cell Culture Techniques / methods*
  • Cell Proliferation / drug effects
  • Cell Size
  • Cell- and Tissue-Based Therapy
  • Collagen Type I / metabolism
  • Culture Media / pharmacology
  • Humans
  • Induced Pluripotent Stem Cells / cytology*
  • Time Factors

Substances

  • Collagen Type I
  • Culture Media