Obesity and Obesity Shape Markedly Influence Spine Biomechanics: A Subject-Specific Risk Assessment Model

Ann Biomed Eng. 2017 Oct;45(10):2373-2382. doi: 10.1007/s10439-017-1868-7. Epub 2017 Jun 12.

Abstract

Underlying mechanisms of obesity-related back pain remain unexplored. Thus, we aim to determine the effect of obesity and its shapes on the spinal loads and the associated risks of injury. Obesity shapes were initially constructed by principal component analysis based on datasets on 5852 obese individuals. Spinal loads, cycles to vertebral failure and trunk stability margin were estimated in a subject-specific trunk model taking account of personalized musculature, passive ligamentous spine, obesity shapes, segmental weights, spine kinematics and bone mineral density. Three obesity shapes (mean and extreme abdominal circumferences) at three body weights (BWs) of 86, 98 and 109 kg were analyzed. Additional BW (12 kg) increased spinal loads by ~11.8%. Higher waist circumferences at identical BW increased spinal forces to the tune of ~20 kg additional BW and the risk of vertebral fatigue compression fracture by 3-7 times when compared with smaller waist circumferences. Forward flexion, greater BW and load in hands increased the trunk stability margin. Spinal loads markedly increased with BW, especially at greater waist circumferences. The risk of vertebral fatigue fracture also substantially increased at greater waist circumferences though not at smaller ones. Obesity and its shape should be considered in spine biomechanics.

Keywords: Apple- and pear-shaped; BMD; Obesity; Somatotype; Spinal loads; Stability; Trunk musculoskeletal model; Vertebral fracture.

MeSH terms

  • Adiposity*
  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Back Pain* / pathology
  • Back Pain* / physiopathology
  • Biomechanical Phenomena
  • Female
  • Humans
  • Lumbar Vertebrae* / pathology
  • Lumbar Vertebrae* / physiopathology
  • Male
  • Middle Aged
  • Models, Biological*
  • Obesity* / pathology
  • Obesity* / physiopathology
  • Weight-Bearing