Qualitative changes in phase-response curve and synchronization at the saddle-node-loop bifurcation

Phys Rev E. 2017 May;95(5-1):052203. doi: 10.1103/PhysRevE.95.052203. Epub 2017 May 3.


Prominent changes in neuronal dynamics have previously been attributed to a specific switch in onset bifurcation, the Bogdanov-Takens (BT) point. This study unveils another, relevant and so far underestimated transition point: the saddle-node-loop bifurcation, which can be reached by several parameters, including capacitance, leak conductance, and temperature. This bifurcation turns out to induce even more drastic changes in synchronization than the BT transition. This result arises from a direct effect of the saddle-node-loop bifurcation on the limit cycle and hence spike dynamics. In contrast, the BT bifurcation exerts its immediate influence upon the subthreshold dynamics and hence only indirectly relates to spiking. We specifically demonstrate that the saddle-node-loop bifurcation (i) ubiquitously occurs in planar neuron models with a saddle node on invariant cycle onset bifurcation, and (ii) results in a symmetry breaking of the system's phase-response curve. The latter entails an increase in synchronization range in pulse-coupled oscillators, such as neurons. The derived bifurcation structure is of interest in any system for which a relaxation limit is admissible, such as Josephson junctions and chemical oscillators.