Real-Time Whole-Genome Sequencing for Surveillance of Listeria monocytogenes, France

Emerg Infect Dis. 2017 Sep;23(9):1462-1470. doi: 10.3201/eid2309.170336. Epub 2017 Sep 17.


During 2015-2016, we evaluated the performance of whole-genome sequencing (WGS) as a routine typing tool. Its added value for microbiological and epidemiologic surveillance of listeriosis was compared with that for pulsed-field gel electrophoresis (PFGE), the current standard method. A total of 2,743 Listeria monocytogenes isolates collected as part of routine surveillance were characterized in parallel by PFGE and core genome multilocus sequence typing (cgMLST) extracted from WGS. We investigated PFGE and cgMLST clusters containing human isolates. Discrimination of isolates was significantly higher by cgMLST than by PFGE (p<0.001). cgMLST discriminated unrelated isolates that shared identical PFGE profiles and phylogenetically closely related isolates with distinct PFGE profiles. This procedure also refined epidemiologic investigations to include only phylogenetically closely related isolates, improved source identification, and facilitated epidemiologic investigations, enabling identification of more outbreaks at earlier stages. WGS-based typing should replace PFGE as the primary typing method for L. monocytogenes.

Keywords: France; Listeria monocytogenes; PFGE; WGS; bacteria; cgMLST; core genome multilocus sequence typing; high-throughput DNA sequencing; listeriosis; molecular typing; prospective study; public health; pulsed-field gel electrophoresis; surveillance; whole-genome sequencing.

Publication types

  • Evaluation Study

MeSH terms

  • Disease Outbreaks
  • Epidemiological Monitoring
  • Food Microbiology
  • France / epidemiology
  • Genome, Bacterial*
  • Humans
  • Listeria monocytogenes / classification
  • Listeria monocytogenes / genetics*
  • Listeria monocytogenes / isolation & purification
  • Listeriosis / epidemiology
  • Listeriosis / microbiology
  • Molecular Typing / methods
  • Whole Genome Sequencing / methods*