Architectural frameworks: defining the structures for implementing learning health systems

Implement Sci. 2017 Jun 23;12(1):78. doi: 10.1186/s13012-017-0607-7.


Background: The vision of transforming health systems into learning health systems (LHSs) that rapidly and continuously transform knowledge into improved health outcomes at lower cost is generating increased interest in government agencies, health organizations, and health research communities. While existing initiatives demonstrate that different approaches can succeed in making the LHS vision a reality, they are too varied in their goals, focus, and scale to be reproduced without undue effort. Indeed, the structures necessary to effectively design and implement LHSs on a larger scale are lacking. In this paper, we propose the use of architectural frameworks to develop LHSs that adhere to a recognized vision while being adapted to their specific organizational context. Architectural frameworks are high-level descriptions of an organization as a system; they capture the structure of its main components at varied levels, the interrelationships among these components, and the principles that guide their evolution. Because these frameworks support the analysis of LHSs and allow their outcomes to be simulated, they act as pre-implementation decision-support tools that identify potential barriers and enablers of system development. They thus increase the chances of successful LHS deployment.

Discussion: We present an architectural framework for LHSs that incorporates five dimensions-goals, scientific, social, technical, and ethical-commonly found in the LHS literature. The proposed architectural framework is comprised of six decision layers that model these dimensions. The performance layer models goals, the scientific layer models the scientific dimension, the organizational layer models the social dimension, the data layer and information technology layer model the technical dimension, and the ethics and security layer models the ethical dimension. We describe the types of decisions that must be made within each layer and identify methods to support decision-making.

Conclusion: In this paper, we outline a high-level architectural framework grounded in conceptual and empirical LHS literature. Applying this architectural framework can guide the development and implementation of new LHSs and the evolution of existing ones, as it allows for clear and critical understanding of the types of decisions that underlie LHS operations. Further research is required to assess and refine its generalizability and methods.

Keywords: Architectural framework; Decision-support tools; Learning health system; Pre-implementation.

MeSH terms

  • Decision Making
  • Delivery of Health Care / methods*
  • Delivery of Health Care / organization & administration*
  • Health Care Reform / methods*
  • Health Plan Implementation / methods*
  • Health Systems Plans / organization & administration*
  • Humans
  • Learning