Locally adapted populations of a copepod can evolve different gene expression patterns under the same environmental pressures

Ecol Evol. 2017 May 9;7(12):4312-4325. doi: 10.1002/ece3.3016. eCollection 2017 Jun.

Abstract

As populations diverge in allopatry, but under similar thermal conditions, do similar thermal performance phenotypes evolve by maintaining similar gene expression patterns, or does genetic divergence lead to divergent patterns of gene expression between these populations? We used genetically divergent populations of the copepod Tigriopus californicus, whose performance at different thermal conditions is well characterized, to investigate transcriptome-wide expression responses under two different thermal regimes: (1) a nonvariable temperature regime and (2) a regime with variable temperature. Our results show the expression profiles of the response to these regimes differed substantially among populations, even for populations that are geographically close. This pattern was accentuated when populations were raised in the variable temperature environment. Less heat-tolerant populations mounted strong but divergent responses to the different thermal regimes, with a large heat-shock response observed in one population, and an apparent reduction in the expression of genes involved in basic cellular processes in the other. Our results suggest that as populations diverge in allopatry, they may evolve starkly different responses to changes in temperature, at the gene expression level, while maintaining similar thermal performance phenotypes.

Keywords: RNA‐seq; Tigriopus californicus; local adaptation; phenotypic plasticity.