Planarizing cytosine: The S1 state structure, vibrations, and nonradiative dynamics of jet-cooled 5,6-trimethylenecytosine

J Chem Phys. 2017 Jun 28;146(24):244308. doi: 10.1063/1.4989465.

Abstract

We measure the S0 → S1 spectrum and time-resolved S1 state nonradiative dynamics of the "clamped" cytosine derivative 5,6-trimethylenecytosine (TMCyt) in a supersonic jet, using two-color resonant two-photon ionization (R2PI), UV/UV holeburning, and ns time-resolved pump/delayed ionization. The experiments are complemented with spin-component scaled second-order approximate coupled cluster (SCS-CC2), time-dependent density functional theory, and multi-state second-order perturbation-theory (MS-CASPT2) ab initio calculations. While the R2PI spectrum of cytosine breaks off ∼500 cm-1 above its 000 band, that of TMCyt extends up to +4400 cm-1 higher, with over a hundred resolved vibronic bands. Thus, clamping the cytosine C5-C6 bond allows us to explore the S1 state vibrations and S0 → S1 geometry changes in detail. The TMCyt S1 state out-of-plane vibrations ν1', ν3', and ν5' lie below 420 cm-1, and the in-plane ν11', ν12', and ν23' vibrational fundamentals appear at 450, 470, and 944 cm-1. S0 → S1 vibronic simulations based on SCS-CC2 calculations agree well with experiment if the calculated ν1', ν3', and ν5' frequencies are reduced by a factor of 2-3. MS-CASPT2 calculations predict that the ethylene-type S1 ⇝ S0 conical intersection (CI) increases from +366 cm-1 in cytosine to >6000 cm-1 in TMCyt, explaining the long lifetime and extended S0 → S1 spectrum. The lowest-energy S1 ⇝ S0 CI of TMCyt is the "amino out-of-plane" (OPX) intersection, calculated at +4190 cm-1. The experimental S1 ⇝ S0 internal conversion rate constant at the S1(v'=0) level is kIC=0.98-2.2⋅108 s-1, which is ∼10 times smaller than in 1-methylcytosine and cytosine. The S1(v'=0) level relaxes into the T1(3ππ*) state by intersystem crossing with kISC=0.41-1.6⋅108 s-1. The T1 state energy is measured to lie 24 580±560 cm-1 above the S0 state. The S1(v'=0) lifetime is τ=2.9 ns, resulting in an estimated fluorescence quantum yield of Φfl=24%. Intense two-color R2PI spectra of the TMCyt amino-enol tautomers appear above 36 000 cm-1. A sharp S1 ionization threshold is observed for amino-keto TMCyt, yielding an adiabatic ionization energy of 8.114±0.002 eV.