Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia
- PMID: 28671687
- DOI: 10.1038/ng.3900
Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia
Abstract
The outcome of treatment-refractory and/or relapsed pediatric T cell acute lymphoblastic leukemia (T-ALL) is extremely poor, and the genetic basis for this is not well understood. Here we report comprehensive profiling of 121 cases of pediatric T-ALL using transcriptome and/or targeted capture sequencing, through which we identified new recurrent gene fusions involving SPI1 (STMN1-SPI1 and TCF7-SPI1). Cases positive for fusions involving SPI1 (encoding PU.1), accounting for 3.9% (7/181) of the examined pediatric T-ALL cases, showed a double-negative (DN; CD4-CD8-) or CD8+ single-positive (SP) phenotype and had uniformly poor overall survival. These cases represent a subset of pediatric T-ALL distinguishable from the known T-ALL subsets in terms of expression of genes involved in T cell precommitment, establishment of T cell identity, and post-β-selection maturation and with respect to mutational profile. PU.1 fusion proteins retained transcriptional activity and, when constitutively expressed in mouse stem/progenitor cells, induced cell proliferation and resulted in a maturation block. Our findings highlight a unique role of SPI1 fusions in high-risk pediatric T-ALL.
Similar articles
-
[Recurrent SPI1 fusions in pediatric T-cell acute lymphoblastic leukemia: novel mutations with poor prognosis].Rinsho Ketsueki. 2018;59(4):439-447. doi: 10.11406/rinketsu.59.439. Rinsho Ketsueki. 2018. PMID: 29743405 Japanese.
-
[Genetic basis of pediatric T-cell acute lymphoblastic leukemia and its clinical impact].Rinsho Ketsueki. 2018;59(7):953-959. doi: 10.11406/rinketsu.59.953. Rinsho Ketsueki. 2018. PMID: 30078808 Review. Japanese.
-
Oncogenic cooperation between TCF7-SPI1 and NRAS(G12D) requires β-catenin activity to drive T-cell acute lymphoblastic leukemia.Nat Commun. 2021 Jul 6;12(1):4164. doi: 10.1038/s41467-021-24442-9. Nat Commun. 2021. PMID: 34230493 Free PMC article.
-
Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia.EBioMedicine. 2016 Jun;8:173-183. doi: 10.1016/j.ebiom.2016.04.038. Epub 2016 May 13. EBioMedicine. 2016. PMID: 27428428 Free PMC article.
-
Molecular genetics of acute lymphoblastic leukemia.J Clin Oncol. 2005 Sep 10;23(26):6306-15. doi: 10.1200/JCO.2005.05.047. J Clin Oncol. 2005. PMID: 16155013 Review.
Cited by
-
Transcriptional regulatory program controlled by MYB in T-cell acute lymphoblastic leukemia.Leukemia. 2024 Dec;38(12):2573-2584. doi: 10.1038/s41375-024-02455-9. Epub 2024 Nov 2. Leukemia. 2024. PMID: 39488662
-
Integrated genomic analyses identify high-risk factors and actionable targets in T-cell acute lymphoblastic leukemia.Blood Sci. 2022 Feb 4;4(1):16-28. doi: 10.1097/BS9.0000000000000102. eCollection 2022 Jan. Blood Sci. 2022. PMID: 35399540 Free PMC article.
-
NOTCH1 pathway activating mutations and clonal evolution in pediatric T-cell acute lymphoblastic leukemia.Cancer Sci. 2019 Feb;110(2):784-794. doi: 10.1111/cas.13859. Epub 2019 Jan 9. Cancer Sci. 2019. PMID: 30387229 Free PMC article.
-
Clinico-biological features of T-cell acute lymphoblastic leukemia with fusion proteins.Blood Cancer J. 2022 Jan 26;12(1):14. doi: 10.1038/s41408-022-00613-9. Blood Cancer J. 2022. PMID: 35082269 Free PMC article.
-
Deubiquitinases: Pro-oncogenic Activity and Therapeutic Targeting in Blood Malignancies.Trends Immunol. 2020 Apr;41(4):327-340. doi: 10.1016/j.it.2020.02.004. Epub 2020 Mar 2. Trends Immunol. 2020. PMID: 32139316 Free PMC article. Review.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
