Long noncoding RNA DANCR regulates miR-1305-Smad 4 axis to promote chondrogenic differentiation of human synovium-derived mesenchymal stem cells

Biosci Rep. 2017 Jul 21;37(4):BSR20170347. doi: 10.1042/BSR20170347. Print 2017 Aug 31.


miRNAs have been reported to regulate cellular differentiation by modulating multiple signaling pathways. Long noncoding RNA (lnc RNA) DANCR was previously identified to be critical for the chondrogenesis of human synovium-derived mesenchymal stem cells (SMSC), however, the underlying molecular mechanism requires better understanding. Here, miRNA expression profiling in DANCR overexpressed in SMSCs identified significant down-regulation of miR-1305, which serves as a downstream target of DANCR. Notably, miR-1305 overexpression reversed DANCR-induced cell proliferation and chondrogenic differentiation of SMSCs, which suggested that miR-1305 antagonized the function of DANCR. Mechanistically, highly expressed miR-1305 resulted in the decreased expression of the TGF-β pathway member Smad4, and inhibition of miR-1305 enhanced the expression level of Smad4. Depletion of Smad4 suppressed the promotion of DANCR in cell proliferation and chondrogenesis of SMSCs. Collectively, our results characterized miR-1305-Smad4 axis as a major downstream functional mechanism of lncRNA DANCR in promoting the chondrogenesis in SMSCs.

Keywords: DANCR; SMSC; Smad4; chondrogenesis; miR-1305.

MeSH terms

  • Animals
  • Cell Differentiation*
  • Chondrogenesis*
  • Humans
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / metabolism*
  • Mice
  • Mice, Nude
  • MicroRNAs / metabolism*
  • RNA, Long Noncoding / metabolism*
  • Smad4 Protein / metabolism*
  • Synovial Membrane / cytology
  • Synovial Membrane / metabolism*


  • DANCR long noncoding RNA, human
  • MIRN1305 microRNA, human
  • MicroRNAs
  • RNA, Long Noncoding
  • SMAD4 protein, human
  • Smad4 Protein