Plant glyco-biotechnology

Semin Cell Dev Biol. 2018 Aug;80:133-141. doi: 10.1016/j.semcdb.2017.07.005. Epub 2017 Jul 5.

Abstract

Glycosylation is an important protein modification in all eukaryotes. Whereas the early asparagine-linked glycosylation (N-glycosylation) and N-glycan processing steps in the endoplasmic reticulum are conserved between mammals and plants, the maturation of complex N-glycans in the Golgi apparatus differs considerably. Due to a restricted number of Golgi-resident N-glycan processing enzymes and the absence of nucleotide sugars such as CMP-N-acetylneuraminic acid, plants produce only a limited repertoire of different N-glycan structures. Moreover, mammalian mucin-type O-glycosylation of serine or threonine residues has not been described in plants and the required machinery is not encoded in their genome which enables de novo build-up of the pathway. As a consequence, plants are very well-suited for the production of homogenous N- and O-glycans and are increasingly used for the production of recombinant glycoproteins with custom-made glycans that may result in the generation of biopharmaceuticals with improved therapeutic potential.

Keywords: Endoplasmic reticulum; Glycan function; Glyco-engineering; Golgi apparatus; N-Glycosylation; O-Glycosylation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Endoplasmic Reticulum / metabolism*
  • Glycoproteins / metabolism*
  • Glycosylation*
  • Golgi Apparatus / metabolism*
  • Humans
  • Plants
  • Protein Processing, Post-Translational / physiology

Substances

  • Glycoproteins