Aim: Autophagy, a highly regulated process with a dual role (pro-survival or pro-death), has been implicated in adverse pregnancy outcomes. The aim of this study was to explore the mechanism whereby mammalian target of rapamycin (mTOR) signaling regulates autophagy by modulating protein O-GlcNAcylation in human trophoblasts.
Methods: HTR8/SVneo cells were incubated in serum-free medium for different time intervals or treated with varying doses of Torin1. Protein expression and cell apoptosis were detected by immunoblotting and flow cytometry, respectively.
Results: Short-term serum starvation or slight suppression of mTOR signaling promoted autophagy and decreased apoptosis in HTR8/SVneo cells. Conversely, prolonged serum starvation or excessive inhibition of mTOR reduced autophagy and enhanced cell apoptosis. Both serum starvation and mTOR signaling suppression reduced protein O-GlcNAcylation. Upregulation and downregulation of O-linked β-N-acetylglucosamine (O-GlcNAc) levels attenuated and augmented autophagy, respectively. Moderate mTOR inhibition-induced autophagy was blocked by upregulation of protein O-GlcNAcylation. Furthermore, immunoprecipitation studies revealed that Beclin1 and synaptosome associated protein 29 (SNAP29) could be O-GlcNAcylated, and that slight mTOR inhibition resulted in decreased O-GlcNAc modification of Beclin1 and SNAP29. Notably, we observed an inverse correlation between phosphorylation (Ser15) and O-GlcNAcylation of Beclin1.
Conclusion: mTOR signaling inhibition played dual roles in regulating autophagy and apoptosis in HTR8/SVneo cells. Moderate mTOR suppression might induce autophagy via modulating O-GlcNAcylation of Beclin1 and SNAP29. Moreover, the negative interplay between Beclin1 O-GlcNAcylation and phosphorylation (Ser15) may be involved in autophagy regulation by mTOR signaling.
Keywords: O-GlcNAc; apoptosis; autophagy; mTOR; phosphorylation.
© 2017 Japan Society of Obstetrics and Gynecology.