Cell lineage and segmentation in the leech

Philos Trans R Soc Lond B Biol Sci. 1985 Dec 17;312(1153):39-56. doi: 10.1098/rstb.1985.0176.

Abstract

Segments in the leech arise by the proliferation of longitudinally arrayed bandlets of blast cells derived from ten identifiable embryonic stem cells, two M, two N, four O/P and two Q teloblasts. In each bandlet, older blast cells lie ahead of those born later. By using microinjected cell lineage tracers it was shown previously that the teloblasts give rise to characteristic cell patterns made up of segmentally iterated complements of progeny designated as M, N, O, P and Q kinship groups. When a teloblast is injected after it has begun generating blast cells, a boundary is observed later in development between anterior, unlabelled progeny of blast cells produced before injection and posterior, labelled progeny of blast cells produced after injection. We have examined such boundaries in detail to establish the precise relationship between blast cell clones and segments, with the following conclusions: (i) in the M, O and P cell lines, one blast cell generates one segmental complement of progeny, but serially homologous blast clones intermix so that no segment boundaries can be defined based on primary blast cell clones; (ii) in the N and Q cell lines, two blast cells are required to generate a complete segmental complement of progeny; (iii) in the process of forming the germinal plate, cells derived from the N and Q teloblasts move past those derived from the M and O/P teloblasts, so that consegmental blast cell clones do not come into register until well after the establishment of segmentally iterated units within each bandlet.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Differentiation
  • Cell Division
  • Clone Cells / cytology
  • Embryo, Nonmammalian / cytology*
  • Leeches / cytology
  • Leeches / embryology*
  • Stem Cells / cytology