Bi-layered collagen nano-structured membrane prototype collagen matrix 10826® for soft tissue regeneration in rabbits: an in vivo ultra-structural study of the early healing phase

J Biol Regul Homeost Agents. 2017;31(2 Suppl. 2):91-97.

Abstract

Collagen Matrix (CM) 10826 is a nanostructured bi-layered collagen membrane obtained from type I and III porcine collagen, which in vitro has shown to have the potential to be a substitute and/or stimulant for soft oral tissue regeneration. The objective of this study was to evaluate the in vivo potential and safety of this membrane for soft tissue regeneration in the early stage of wound healing. Two soft tissue wounds (test and control) were created on the back skin of 5 rabbits (female New Zealand White Rabbits specific pathogen free). All wounds were protected by a special poly-tetra-fluoro-ethylene (PTFE) healing camera. On each rabbit on the test side CM-10826 was used, while on the control side conventional treatment (an autologous pedicle graft) was performed. The healing process was observed clinically after 2 and 6 days, and Magnetic Resonance Imaging (MRI) was performed after this period. After 7 days, animals were sacrificed and specimens were analyzed with light optic microscopy (LM), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These in vivo trials on rabbits confirmed that CM-10826 is well tolerated, without signs of histological inflammatory reaction and proved to be able to accelerate the spontaneous repair of the skin defect taken as the control. The light-optic and ultra-microscopy of serial biopsies showed that the new matrix is biocompatible and is able to function as a scaffold inducing soft tissue regeneration. In conclusion this study demonstrates that CM-10826 promote early soft tissue regeneration and suggests it is a potential constituent for human autologous keratinocytes seeded derma bioequivalent. It protects the wound from injuries and bacterial contamination accelerating healing process. As a clinical relevance, we consider that the quality of life of patients will be improved avoiding the use of major autologous grafts, reducing the hospitalization time and morbidity.