Effect of alternating standing and sitting on blood pressure and pulse wave velocity during a simulated workday in adults with overweight/obesity

J Hypertens. 2017 Dec;35(12):2411-2418. doi: 10.1097/HJH.0000000000001463.


Objective: Reducing prolonged sitting at work has been recommended by an expert panel, but whether intermittent standing improves vascular health is unclear. We aimed to test whether using a sit-stand desk could reduce blood pressure (BP) and pulse wave velocity (PWV) during a simulated workday.

Methods: Overweight/obese adults with pre-to-Stage 1 hypertension completed a randomized crossover study with two simulated workday conditions: STAND-SIT (alternating standing and sitting condition every 30 min) and SIT (continuous sitting condition). Oscillometric BP was measured hourly. Carotid-femoral, carotid-radial, and carotid-ankle PWV were measured in the morning, mid-day, and late afternoon using tonometry.

Results: Participants [n = 25, 64% male, 84% white, mean (SD) age: 42 (12) years] had average resting SBP of 132 (9) mmHg and DBP of 83 (8) mmHg. In linear mixed models, STAND-SIT resulted in a significantly lower DBP (mean ± SE: -1.0 ± 0.4 mmHg, P = 0.020) and mean arterial pressure (MAP) (-1.0 ± 0.4 mmHg, P = 0.029) compared with SIT. SBP (-0.9 ± 0.7 mmHg, P = 0.176) was not different across conditions. Carotid-ankle PWV was significantly lower during the STAND-SIT vs. SIT condition (-0.27 ± 0.13 m/s, P = 0.047), whereas carotid-femoral PWV (-0.03 ± 0.13 m/s, P = 0.831) and carotid-radial PWV (-0.30 ± 0.18 m/s, P = 0.098) were not. Changes in MAP partially explained changes in PWV.

Conclusion: Interrupting prolonged sitting during deskwork with intermittent standing was a sufficient stimulus to slightly, but statistically significantly, decrease DBP, MAP, and carotid-ankle PWV. Though the clinical significance of the observed effects is modest, regular use of a sit-stand desk may be a practical way to lower BP and PWV while performing deskwork.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Adult
  • Blood Pressure / physiology*
  • Cross-Over Studies
  • Female
  • Humans
  • Male
  • Middle Aged
  • Obesity* / epidemiology
  • Obesity* / physiopathology
  • Overweight* / epidemiology
  • Overweight* / physiopathology
  • Posture / physiology*
  • Pulse Wave Analysis / statistics & numerical data*