Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug;48(8):2255-2262.
doi: 10.1161/STROKEAHA.117.016705. Epub 2017 Jul 13.

PD-L1 (Programmed Death Ligand 1) Protects Against Experimental Intracerebral Hemorrhage-Induced Brain Injury

Affiliations

PD-L1 (Programmed Death Ligand 1) Protects Against Experimental Intracerebral Hemorrhage-Induced Brain Injury

Ranran Han et al. Stroke. 2017 Aug.

Abstract

Background and purpose: Intracerebral hemorrhage (ICH) is a neurologically destructive stroke, for which no valid treatment is available. This preclinical study examined the therapeutic effect of PD-L1 (programmed death ligand 1), a B7 family member and a ligand for both PD-1 (programmed death 1) and B7-1 (CD80), in a murine ICH model.

Methods: ICH was induced by injecting autologous blood into 252 male C57BL/6 and Rag1-/- mice. One hour later, ICH mice were randomly assigned to receive an intraperitoneal injection of vehicle, PD-L1, or anti-PD-L1 antibody. Neurological function was assessed along with brain edema, brain infiltration of immune cells, blood-brain barrier integrity, neuron death, and mTOR (mammalian target of rapamycin) pathway products.

Results: PD-L1 significantly attenuated neurological deficits, reduced brain edema, and decreased hemorrhage volume in ICH mice. PD-L1 specifically downsized the number of brain-infiltrating CD4+ T cells and the percentages of Th1 and Th17 cells but increased the percentages of Th2 and regulatory T cells. In the PD-L1-treated group, we observed an amelioration of the inflammatory milieu, decreased cell death, and enhanced blood-brain barrier integrity. PD-L1 also inhibited the mTOR pathway. The administration of anti-PD-L1 antibody produced the opposite effects to those of PD-L1 in ICH mice.

Conclusions: PD-L1 provided protection from the damaging consequences of ICH.

Keywords: PD-L1; cerebral hemorrhage; hematoma; inflammation; stroke.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms