Exploiting Carbonyl Groups to Control Intermolecular Rhodium-Catalyzed Alkene and Alkyne Hydroacylation

J Am Chem Soc. 2017 Jul 26;139(29):10142-10149. doi: 10.1021/jacs.7b05713. Epub 2017 Jul 17.

Abstract

Readily available β-carbonyl-substituted aldehydes are shown to be exceptional substrates for Rh-catalyzed intermolecular alkene and alkyne hydroacylation reactions. By using cationic rhodium catalysts incorporating bisphosphine ligands, efficient and selective reactions are achieved for β-amido, β-ester, and β-keto aldehyde substrates, providing a range of synthetically useful 1,3-dicarbonyl products in excellent yields. A correspondingly broad selection of alkenes and alkynes can be employed. For alkyne substrates, the use of a catalyst incorporating the Ampaphos ligand triggers a regioselectivity switch, allowing both linear and branched isomers to be prepared with high selectivity in an efficient manner. Structural data, confirming aldehyde chelation, and a proposed mechanism are provided.

Publication types

  • Research Support, Non-U.S. Gov't