Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae

PLoS One. 2017 Jul 27;12(7):e0179928. doi: 10.1371/journal.pone.0179928. eCollection 2017.

Abstract

Most of the thermal tolerance studies on fish have been performed on juveniles and adults, whereas limited information is available for larvae, a stage which may have a particularly narrow range in tolerable temperatures. Moreover, previous studies on thermal limits for marine and freshwater fish larvae (53 studies reviewed here) applied a wide range of methodologies (e.g. the static or dynamic method, different exposure times), making it challenging to compare across taxa. We measured the Critical Thermal Maximum (CTmax) of Atlantic herring (Clupea harengus) and European seabass (Dicentrarchus labrax) larvae using the dynamic method (ramping assay) and assessed the effect of warming rate (0.5 to 9°C h-1) and acclimation temperature. The larvae of herring had a lower CTmax (lowest and highest values among 222 individual larvae, 13.1-27.0°C) than seabass (lowest and highest values among 90 individual larvae, 24.2-34.3°C). At faster rates of warming, larval CTmax significantly increased in herring, whereas no effect was observed in seabass. Higher acclimation temperatures led to higher CTmax in herring larvae (2.7 ± 0.9°C increase) with increases more pronounced at lower warming rates. Pre-trials testing the effects of warming rate are recommended. Our results for these two temperate marine fishes suggest using a warming rate of 3-6°C h-1: CTmax is highest in trials of relatively short duration, as has been suggested for larger fish. Additionally, time-dependent thermal tolerance was observed in herring larvae, where a difference of up to 8°C was observed in the upper thermal limit between a 0.5- or 24-h exposure to temperatures >18°C. The present study constitutes a first step towards a standard protocol for measuring thermal tolerance in larval fish.

MeSH terms

  • Acclimatization / physiology*
  • Animals
  • Female
  • Fishes / physiology*
  • Fresh Water
  • Hot Temperature*
  • Larva / physiology
  • Male
  • Saline Waters
  • Seawater*
  • Time Factors

Grants and funding

This work was partially funded by the FITNESS project (Deutsche Forschungemeinschaft, http://www.dfg.de/en/, PE 1157/8-1). This work also received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 678193 (CERES, Climate Change and European Aquatic Resources, contribution nr. 6), and contributes to the ERANet program CLIMAR "Climate-driven changes in the Habitat Suitability of Marine Organisms" (BMBF DLR 01DN17019). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.