Associations between motor unit action potential parameters and surface EMG features

J Appl Physiol (1985). 2017 Oct 1;123(4):835-843. doi: 10.1152/japplphysiol.00482.2017. Epub 2017 Jul 27.


The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDFMU), and amplitude (RMSMU) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT (R2 = 0.64 ± 0.14), whereas MDFMU and RMSMU showed a weaker relation with RT (R2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV (R2 = 0.71), with a strong association to ankle dorsiflexion force (R2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies.NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles.

Keywords: EMG features; conduction velocity; motor unit; recruitment; size principle; surface electromyography.

MeSH terms

  • Action Potentials*
  • Adult
  • Electromyography
  • Humans
  • Male
  • Muscle Contraction*
  • Muscle, Skeletal / physiology*
  • Recruitment, Neurophysiological*
  • Young Adult