Multiple PPR protein interactions are involved in the RNA editing system in Arabidopsis mitochondria and plastids

Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8883-8888. doi: 10.1073/pnas.1705815114. Epub 2017 Jul 31.

Abstract

Recent identification of several different types of RNA editing factors in plant organelles suggests complex RNA editosomes within which each factor has a different task. However, the precise protein interactions between the different editing factors are still poorly understood. In this paper, we show that the E+-type pentatricopeptide repeat (PPR) protein SLO2, which lacks a C-terminal cytidine deaminase-like DYW domain, interacts in vivo with the DYW-type PPR protein DYW2 and the P-type PPR protein NUWA in mitochondria, and that the latter enhances the interaction of the former ones. These results may reflect a protein scaffold or complex stabilization role of NUWA between E+-type PPR and DYW2 proteins. Interestingly, DYW2 and NUWA also interact in chloroplasts, and DYW2-GFP overexpressing lines show broad editing defects in both organelles, with predominant specificity for sites edited by E+-type PPR proteins. The latter suggests a coordinated regulation of organellar multiple site editing through DYW2, which probably provides the deaminase activity to E+ editosomes.

Keywords: DYW2; NUWA; PPR; RNA editing; SLO2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Chloroplasts / genetics
  • Chloroplasts / metabolism*
  • Mitochondria / genetics
  • Mitochondria / metabolism*
  • Mitochondrial Proteins / genetics
  • Mitochondrial Proteins / metabolism*
  • RNA Editing / physiology*

Substances

  • Arabidopsis Proteins
  • Mitochondrial Proteins
  • SLO2 protein, Arabidopsis