Breaking down autophagy and the Ubiquitin Proteasome System

Parkinsonism Relat Disord. 2018 Jan:46 Suppl 1:S97-S100. doi: 10.1016/j.parkreldis.2017.07.026. Epub 2017 Jul 26.

Abstract

Autophagy is an evolutionarily conserved catabolic process that is involved in cellular homeostasis and stress responses. Although basal levels of autophagy are essential for cellular homeostasis, dysregulated autophagy is linked to neurodegeneration. Recent studies using genetic or neurotoxin-based models of Parkinson's disease (PD) detect autophagy. We demonstrate that neurotoxins induce autophagy in dopaminergic neuronal cell line and primary cultured neurons. Based on previous reports, including ones from our laboratory, which show that elevated reactive oxygen species (ROS) and cytosolic calcium are implicated in dopaminergic neurodegeneration, we reasoned that these triggers may play critical roles in determining dysregulated autophagy. Similarly, we have demonstrated that ROS-mediated signals play an essential role in 6-hydroxydopamine (6-OHDA)-induced apoptosis, whereas MPP+ causes elevations in cytosolic calcium and calpain activation. By using these experimental models, we specifically address the question as to whether an increase in ROS or cytosolic calcium governs abnormal flux of autophagy as well as the ubiquitin proteasome system (UPS). So far, our data support a notion that ROS and cytosolic calcium act on a distinct flux of autophagy and the UPS. Our data also raise the possibility of interplay between autophagy and other cell death modes (e.g., caspase- or calpain-dependent cell death) during dopaminergic neurodegeneration.

Keywords: Autophagy; Calcium; Dopaminergic neurodegeneration; Reactive oxygen species.

Publication types

  • Review

MeSH terms

  • Animals
  • Autophagy / drug effects
  • Autophagy / physiology*
  • Calcium / metabolism
  • Disease Models, Animal
  • Humans
  • Neurotoxins / toxicity
  • Parkinson Disease / etiology
  • Parkinson Disease / metabolism*
  • Proteasome Endopeptidase Complex / metabolism*
  • Reactive Oxygen Species

Substances

  • Neurotoxins
  • Reactive Oxygen Species
  • Proteasome Endopeptidase Complex
  • Calcium