Effect of the Cationic Block Structure on the Characteristics of Sludge Flocs Formed by Charge Neutralization and Patching

Materials (Basel). 2017 May 3;10(5):487. doi: 10.3390/ma10050487.


In this study, a template copolymer (TPAA) of (3-Acrylamidopropyl) trimethylammonium chloride (AATPAC) and acrylamide (AM) was successfully synthesized though ultrasonic-initiated template copolymerization (UTP), using sodium polyacrylate (PAAS) as a template. TPAA was characterized by an evident cationic microblock structure which was observed through the analyses of the reactivity ratio, Fourier transform infrared spectroscopy (FTIR), ¹H (13C) nuclear magnetic resonance spectroscopy (¹H (13C) NMR), and thermogravimetry/differential scanning calorimetry (TG/DSC). The introduction of the template could improve the monomer (AATPAC) reactivity ratio and increase the length and amount of AATPAC segments. This novel cationic microblock structure extremely enhanced the ability of charge neutralization, patching, and bridging, thus improving the activated sludge flocculation performance. The experiments of floc formation, breakage, and regrowth revealed that the cationic microblock structure in the copolymer resulted in large and compact flocs, and these flocs had a rapid regrowth when broken. Finally, the larger and more compact flocs contributed to the formation of more channels and voids, and therefore the specific resistance to filtration (SRF) reached a minimum.

Keywords: cationic polyacrylamide; charge neutralization and patching; floc breakage and regrowth; fractal dimension; microblock structrue.