Sensitive, Quantitative Naked-Eye Biodetection with Polyhedral Cu Nanoshells

Adv Mater. 2017 Oct;29(37). doi: 10.1002/adma.201702945. Epub 2017 Aug 7.

Abstract

One of the most heavily used methods in chemical and biological labeling, detection, and imaging is based on silver shell-based enhancement on Au nanoparticles (AuNPs) that is useful for amplifying Rayleigh scattering, colorimetric signal, surface-enhanced Raman scattering, and electrical signal, but poor structural controllability and nonspecific growth of silver shells have limited its applications, especially with respect to signal reproducibility and quantification. Here, a highly specific, well-defined Cu nanopolyhedral shell overgrowth chemistry is developed with the aid of polyethyleneimine (PEI) on AuNPs, and the use of this PEI-mediated Cu polyhedral nanoshell (CuP) chemistry is shown as a means of light-scattering signal enhancement for the development of naked-eye-based highly sensitive and quantitative detections of DNA and viruses. Remarkably, these CuPs are exclusively formed on AuNPs in a controllable manner, with no noticeable nonspecific CuP growth. The findings enable to acquire clearly visible signals without analytic instrumentation, detectable down to 8 × 10-15 m of DNA (anthrax sequence) and 2700 copies of viruses (noroviruses in clinical stool samples) with broad dynamic ranges on archetypal assay platforms. This new method provides a general platform in controlling Cu shell nanostructures and their optical signals, and opens up revenues for highly reliable, quantitative onsite naked-eye biodetection.

Keywords: Cu nanoshells; DNA detection; biosensors; naked-eye detection; norovirus.